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Preface

The response of students and teachers to the first three editions of Linear Algebra and
Its Applications has been most gratifying. This Fourth Edition provides substantial
support both for teaching and for using technology in the course. As before, the text
provides a modern elementary introduction to linear algebra and a broad selection of
interesting applications. The material is accessible to students with the maturity that
should come from successful completion of two semesters of college-level mathematics,
usually calculus.

The main goal of the text is to help students master the basic concepts and skills they
will use later in their careers. The topics here follow the recommendations of the Linear
Algebra Curriculum Study Group, which were based on a careful investigation of the
real needs of the students and a consensus among professionals in many disciplines that
use linear algebra. Hopefully, this course will be one of the most useful and interesting
mathematics classes taken by undergraduates.

WHAT'S NEW IN THIS EDITION

The main goal of this revision was to update the exercises and provide additional con-
tent, both in the book and online.

1. More than 25 percent of the exercises are new or updated, especially the computa-
tional exercises. The exercise sets remain one of the most important features of this
book, and these new exercises follow the same high standard of the exercise sets of
the past three editions. They are crafted in a way that retells the substance of each
of the sections they follow, developing the students’ confidence while challenging
them to practice and generalize the new ideas they have just encountered.

2. Twenty-five percent of chapter openers are new. These introductory vignettes pro-
vide applications of linear algebra and the motivation for developing the mathematics
that follows. The text returns to that application in a section toward the end of the
chapter.

3. A New Chapter: Chapter 8, The Geometry of Vector Spaces, provides a fresh topic
that my students have really enjoyed studying. Sections 1, 2, and 3 provide the basic
geometric tools. Then Section 6 uses these ideas to study Bezier curves and surfaces,
which are used in engineering and online computer graphics (in Adobe® Illustrator®
and Macromedia® FreeHand®). These four sections can be covered in four or five
50-minute class periods.

A second course in linear algebra applications typically begins with a substantial
review of key ideas from the first course. If part of Chapter 8 is in the first course,
the second course could include a brief review of sections 1 to 3 and then a focus on
the geometry in sections 4 and 5. That would lead naturally into the online chapters
9 and 10, which have been used with Chapter 8 at a number of schools for the past
five years.

4. The Study Guide, which has always been an integral part of the book, has been up-
dated to cover the new Chapter 8. As with past editions, the Study Guide incorporates

ix
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DISTINCTIVE FEATURES

detailed solutions to every third odd-numbered exercise as well as solutions to every
odd-numbered writing exercise for which the text only provides a hint.

5. Two new chapters are now available online, and can be used in a second course:

Chapter 9. Optimization
Chapter 10. Finite-State Markov Chains

An access code is required and is available to qualified adopters. For more informa-
tion, visit www.pearsonhighered.com/irc or contact your Pearson representative.

6. PowerPoint® slides are now available for the 25 core sections of the text; also in-
cluded are 75 figures from the text.

Early Introduction of Key Concepts

Many fundamental ideas of linear algebra are introduced within the first seven lectures,
in the concrete setting of R”, and then gradually examined from different points of view.
Later generalizations of these concepts appear as natural extensions of familiar ideas,
visualized through the geometric intuition developed in Chapter 1. A major achievement
of this text is that the level of difficulty is fairly even throughout the course.

A Modern View of Matrix Multiplication

Good notation is crucial, and the text reflects the way scientists and engineers actually
use linear algebra in practice. The definitions and proofs focus on the columns of a ma-
trix rather than on the matrix entries. A central theme is to view a matrix—vector product
Ax as a linear combination of the columns of A. This modern approach simplifies many
arguments, and it ties vector space ideas into the study of linear systems.

Linear Transformations

Linear transformations form a “thread” that is woven into the fabric of the text. Their
use enhances the geometric flavor of the text. In Chapter 1, for instance, linear trans-
formations provide a dynamic and graphical view of matrix—vector multiplication.

Eigenvalues and Dynamical Systems

Eigenvalues appear fairly early in the text, in Chapters 5 and 7. Because this material
is spread over several weeks, students have more time than usual to absorb and review
these critical concepts. Eigenvalues are motivated by and applied to discrete and con-
tinuous dynamical systems, which appear in Sections 1.10, 4.8, and 4.9, and in five
sections of Chapter 5. Some courses reach Chapter 5 after about five weeks by covering
Sections 2.8 and 2.9 instead of Chapter 4. These two optional sections present all the
vector space concepts from Chapter 4 needed for Chapter 5.

Orthogonality and Least-Squares Problems

These topics receive a more comprehensive treatment than is commonly found in begin-
ning texts. The Linear Algebra Curriculum Study Group has emphasized the need for
a substantial unit on orthogonality and least-squares problems, because orthogonality
plays such an important role in computer calculations and numerical linear algebra and
because inconsistent linear systems arise so often in practical work.
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PEDAGOGICAL FEATURES
Applications

A broad selection of applications illustrates the power of linear algebra to explain fun-
damental principles and simplify calculations in engineering, computer science, math-
ematics, physics, biology, economics, and statistics. Some applications appear in sep-
arate sections; others are treated in examples and exercises. In addition, each chapter
opens with an introductory vignette that sets the stage for some application of linear
algebra and provides a motivation for developing the mathematics that follows. Later,
the text returns to that application in a section near the end of the chapter.

A Strong Geometric Emphasis

Every major concept in the course is given a geometric interpretation, because many
students learn better when they can visualize an idea. There are substantially more
drawings here than usual, and some of the figures have never before appeared in a linear
algebra text.

Examples

This text devotes a larger proportion of its expository material to examples than do
most linear algebra texts. There are more examples than an instructor would ordinarily
present in class. But because the examples are written carefully, with lots of detail,
students can read them on their own.

Theorems and Proofs

Important results are stated as theorems. Other useful facts are displayed in tinted boxes,
for easy reference. Most of the theorems have formal proofs, written with the beginning
student in mind. In a few cases, the essential calculations of a proof are exhibited in a
carefully chosen example. Some routine verifications are saved for exercises, when they
will benefit students.

Practice Problems

A few carefully selected Practice Problems appear just before each exercise set. Com-
plete solutions follow the exercise set. These problems either focus on potential trouble
spots in the exercise set or provide a “warm-up” for the exercises, and the solutions
often contain helpful hints or warnings about the homework.

Exercises

The abundant supply of exercises ranges from routine computations to conceptual ques-
tions that require more thought. A good number of innovative questions pinpoint con-
ceptual difficulties that I have found on student papers over the years. Each exercise
set is carefully arranged in the same general order as the text; homework assignments
are readily available when only part of a section is discussed. A notable feature of the
exercises is their numerical simplicity. Problems “unfold” quickly, so students spend
little time on numerical calculations. The exercises concentrate on teaching understand-
ing rather than mechanical calculations. The exercises in the Fourth Edition maintain
the integrity of the exercises from the third edition, while providing fresh problems for
students and instructors.

Exercises marked with the symbol [M] are designed to be worked with the aid of a
“Matrix program” (a computer program, such as MATLAB® Maple™, Mathematica®,
MathCad®, or Derive™, or a programmable calculator with matrix capabilities, such as
those manufactured by Texas Instruments).
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WEB SUPPORT

True/False Questions

To encourage students to read all of the text and to think critically, I have developed 300
simple true/false questions that appear in 33 sections of the text, just after the computa-
tional problems. They can be answered directly from the text, and they prepare students
for the conceptual problems that follow. Students appreciate these questions—after
they get used to the importance of reading the text carefully. Based on class testing
and discussions with students, I decided not to put the answers in the text. (The Study
Guide tells the students where to find the answers to the odd-numbered questions.) An
additional 150 true/false questions (mostly at the ends of chapters) test understanding
of the material. The text does provide simple T/F answers to most of these questions,
but it omits the justifications for the answers (which usually require some thought).

Writing Exercises

An ability to write coherent mathematical statements in English is essential for all stu-
dents of linear algebra, not just those who may go to graduate school in mathematics.
The text includes many exercises for which a written justification is part of the answer.
Conceptual exercises that require a short proof usually contain hints that help a student
get started. For all odd-numbered writing exercises, either a solution is included at
the back of the text or a hint is provided and the solution is given in the Study Guide,
described below.

Computational Topics

The text stresses the impact of the computer on both the development and practice of
linear algebra in science and engineering. Frequent Numerical Notes draw attention
to issues in computing and distinguish between theoretical concepts, such as matrix
inversion, and computer implementations, such as LU factorizations.

This Web site at www.pearsonhighered.com/lay contains support material for the text-
book. For students, the Web site contains review sheets and practice exams (with
solutions) that cover the main topics in the text. They come directly from courses I
have taught in past years. Each review sheet identifies key definitions, theorems, and
skills from a specified portion of the text.

Applications by Chapters

The Web site also contains seven Case Studies, which expand topics introduced at the
beginning of each chapter, adding real-world data and opportunities for further explo-
ration. In addition, more than 20 Application Projects either extend topics in the text or
introduce new applications, such as cubic splines, airline flight routes, dominance matri-
ces in sports competition, and error-correcting codes. Some mathematical applications
are integration techniques, polynomial root location, conic sections, quadric surfaces,
and extrema for functions of two variables. Numerical linear algebra topics, such as
condition numbers, matrix factorizations, and the QR method for finding eigenvalues,
are also included. Woven into each discussion are exercises that may involve large data
sets (and thus require technology for their solution).

Getting Started with Technology

If your course includes some work with MATLAB, Maple, Mathematica, or TI cal-
culators, you can read one of the projects on the Web site for an introduction to the
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technology. In addition, the Study Guide provides introductory material for first-time
users.

Data Files

Hundreds of files contain data for about 900 numerical exercises in the text, Case Stud-
ies, and Application Projects. The data are available at www.pearsonhighered.com/lay
in a variety of formats—for MATLAB, Maple, Mathematica, and the TI-83+/86/89
graphic calculators. By allowing students to access matrices and vectors for a particular
problem with only a few keystrokes, the data files eliminate data entry errors and save
time on homework.

MATLAB Projects

These exploratory projects invite students to discover basic mathematical and numerical
issues in linear algebra. Written by Rick Smith, they were developed to accompany a
computational linear algebra course at the University of Florida, which has used Linear
Algebra and Its Applications for many years. The projects are referenced by an icon
at appropriate points in the text. About half of the projects explore fundamental
concepts such as the column space, diagonalization, and orthogonal projections; several
projects focus on numerical issues such as flops, iterative methods, and the SVD; and a
few projects explore applications such as Lagrange interpolation and Markov chains.

Study Guide

A printed version of the Study Guide is available at low cost. I wrote this Guide to
be an integral part of the course. An icon [ se | in the text directs students to special
subsections of the Guide that suggest how to master key concepts of the course. The
Guide supplies a detailed solution to every third odd-numbered exercise, which allows
students to check their work. A complete explanation is provided whenever an odd-
numbered writing exercise has only a “Hint” in the answers. Frequent “Warnings”
identify common errors and show how to prevent them. MATLAB boxes introduce
commands as they are needed. Appendixes in the Study Guide provide comparable
information about Maple, Mathematica, and TI graphing calculators (ISBN: 0-321-
38883-6).

Instructor’s Edition

For the convenience of instructors, this special edition includes brief answers to all
exercises. A Note to the Instructor at the beginning of the text provides a commentary
on the design and organization of the text, to help instructors plan their courses. It also
describes other support available for instructors. (ISBN: 0-321-38518-7)

Instructor’s Technology Manuals

Each manual provides detailed guidance for integrating a specific software package or
graphic calculator throughout the course, written by faculty who have already used the
technology with this text. The following manuals are available to qualified instructors
through the Pearson Instructor Resource Center, www.pearsonhighered.com/irc: MAT-
LAB (ISBN: 0-321-53365-8), Maple (ISBN: 0-321-75605-3), Mathematica (ISBN: 0-
321-38885-2), and the TI-834-/86/89 (ISBN: 0-321-38887-9).
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A Note to Students

This course is potentially the most interesting and worthwhile undergraduate mathe-
matics course you will complete. In fact, some students have written or spoken to me
after graduation and said that they still use this text occasionally as a reference in their
careers at major corporations and engineering graduate schools. The following remarks
offer some practical advice and information to help you master the material and enjoy
the course.

In linear algebra, the concepts are as important as the computations. The simple
numerical exercises that begin each exercise set only help you check your understanding
of basic procedures. Later in your career, computers will do the calculations, but you
will have to choose the calculations, know how to interpret the results, and then explain
the results to other people. For this reason, many exercises in the text ask you to explain
or justify your calculations. A written explanation is often required as part of the answer.
For odd-numbered exercises, you will find either the desired explanation or at least a
good hint. You must avoid the temptation to look at such answers before you have tried
to write out the solution yourself. Otherwise, you are likely to think you understand
something when in fact you do not.

To master the concepts of linear algebra, you will have to read and reread the text
carefully. New terms are in boldface type, sometimes enclosed in a definition box. A
glossary of terms is included at the end of the text. Important facts are stated as theorems
or are enclosed in tinted boxes, for easy reference. I encourage you to read the first five
pages of the Preface to learn more about the structure of this text. This will give you a
framework for understanding how the course may proceed.

In a practical sense, linear algebra is a language. You must learn this language the
same way you would a foreign language—with daily work. Material presented in one
section is not easily understood unless you have thoroughly studied the text and worked
the exercises for the preceding sections. Keeping up with the course will save you lots
of time and distress!

Numerical Notes

I hope you read the Numerical Notes in the text, even if you are not using a computer or
graphic calculator with the text. In real life, most applications of linear algebra involve
numerical computations that are subject to some numerical error, even though that error
may be extremely small. The Numerical Notes will warn you of potential difficulties in
using linear algebra later in your career, and if you study the notes now, you are more
likely to remember them later.

If you enjoy reading the Numerical Notes, you may want to take a course later in
numerical linear algebra. Because of the high demand for increased computing power,
computer scientists and mathematicians work in numerical linear algebra to develop
faster and more reliable algorithms for computations, and electrical engineers design
faster and smaller computers to run the algorithms. This is an exciting field, and your
first course in linear algebra will help you prepare for it.

XV
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A Note to Students

Study Guide

To help you succeed in this course, I suggest that you purchase the Study Guide
(www.mypearsonstore.com; 0-321-38883-6). Not only will it help you learn linear
algebra, it also will show you how to study mathematics. At strategic points in your
textbook, an icon [_se | will direct you to special subsections in the Study Guide entitled
“Mastering Linear Algebra Concepts.” There you will find suggestions for constructing
effective review sheets of key concepts. The act of preparing the sheets is one of
the secrets to success in the course, because you will construct links between ideas.
These links are the “glue” that enables you to build a solid foundation for learning and
remembering the main concepts in the course.

The Study Guide contains a detailed solution to every third odd-numbered exercise,
plus solutions to all odd-numbered writing exercises for which only a hint is given in
the Answers section of this book. The Guide is separate from the text because you
must learn to write solutions by yourself, without much help. (I know from years of
experience that easy access to solutions in the back of the text slows the mathematical
development of most students.) The Guide also provides warnings of common errors
and helpful hints that call attention to key exercises and potential exam questions.

If you have access to technology—MATLAB, Maple, Mathematica, or a TI
graphing calculator—you can save many hours of homework time. The Study Guide
is your “lab manual” that explains how to use each of these matrix utilities. It
introduces new commands when they are needed. You can download from the website
www.pearsonhighered.com/lay the data for more than 850 exercises in the text. (With
a few keystrokes, you can display any numerical homework problem on your screen.)
Special matrix commands will perform the computations for you!

What you do in your first few weeks of studying this course will set your pattern
for the term and determine how well you finish the course. Please read “How to Study
Linear Algebra” in the Study Guide as soon as possible. My students have found the
strategies there very helpful, and I hope you will, too.
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Linear Equations in

Linear Algebra

INTRODUCTORY EXAMPLE

Linear Models in Economics
and Engineering

It was late summer in 1949. Harvard Professor Wassily
Leontief was carefully feeding the last of his punched
cards into the university’s Mark II computer. The cards
contained economic information about the U.S. economy
and represented a summary of more than 250,000 pieces
of information produced by the U.S. Bureau of Labor
Statistics after two years of intensive work. Leontief had
divided the U.S. economy into 500 “sectors,” such as the
coal industry, the automotive industry, communications,
and so on. For each sector, he had written a linear equation
that described how the sector distributed its output to
the other sectors of the economy. Because the Mark II,
one of the largest computers of its day, could not handle
the resulting system of 500 equations in 500 unknowns,
Leontief had distilled the problem into a system of 42
equations in 42 unknowns.

Programming the Mark II computer for Leontief’s 42
equations had required several months of effort, and he
was anxious to see how long the computer would take
to solve the problem. The Mark II hummed and blinked
for 56 hours before finally producing a solution. We will
discuss the nature of this solution in Sections 1.6 and 2.6.

Leontief, who was awarded the 1973 Nobel Prize
in Economic Science, opened the door to a new era
in mathematical modeling in economics. His efforts

at Harvard in 1949 marked one of the first significant
uses of computers to analyze what was then a large-
scale mathematical model. Since that time, researchers
in many other fields have employed computers to analyze
mathematical models. Because of the massive amounts of
data involved, the models are usually linear; that is, they
are described by systems of linear equations.

The importance of linear algebra for applications has
risen in direct proportion to the increase in computing
power, with each new generation of hardware and
software triggering a demand for even greater capabilities.
Computer science is thus intricately linked with linear
algebra through the explosive growth of parallel processing
and large-scale computations.

Scientists and engineers now work on problems far
more complex than even dreamed possible a few decades
ago. Today, linear algebra has more potential value for
students in many scientific and business fields than any
other undergraduate mathematics subject! The material in
this text provides the foundation for further work in many
interesting areas. Here are a few possibilities; others will
be described later.

e Oil exploration. When a ship searches for offshore
oil deposits, its computers solve thousands of
separate systems of linear equations every day. The
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seismic data for the equations are obtained from employs linear programs that schedule flight crews,
underwater shock waves created by explosions monitor the locations of aircraft, or plan the varied
from air guns. The waves bounce off subsurface schedules of support services such as maintenance
rocks and are measured by geophones attached to and terminal operations.
mile-long cables behind the ship. o Electrical networks. Engineers use simulation

e Linear programming. Many important management software to design electrical circuits and microchips
decisions today are made on the basis of linear involving millions of transistors. Such software
programming models that utilize hundreds of relies on linear algebra techniques and systems of
variables. The airline industry, for instance, linear equations.

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them to
introduce some of the central concepts of linear algebra in a simple and concrete setting.
Sections 1.1 and 1.2 present a systematic method for solving systems of linear equations.
This algorithm will be used for computations throughout the text. Sections 1.3 and
1.4 show how a system of linear equations is equivalent to a vector equation and to a
matrix equation. This equivalence will reduce problems involving linear combinations
of vectors to questions about systems of linear equations. The fundamental concepts of
spanning, linear independence, and linear transformations, studied in the second half of
the chapter, will play an essential role throughout the text as we explore the beauty and
power of linear algebra.

1.1 | SYSTEMS OF LINEAR EQUATIONS

A linear equation in the variables x, ..., x, is an equation that can be written in the
form
ay Xy +axxy + -+ apx, =b (1)

where b and the coefficients «, ..., a, are real or complex numbers, usually known
in advance. The subscript n may be any positive integer. In textbook examples and
exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000,
or even larger.

The equations

4x; —5x,+2=x; and x; =2(«/€—x1) + X3
are both linear because they can be rearranged algebraically as in equation (1):
3x1 —5x,=—2 and 2x; + x, —x3 = 276
The equations
dx; —5x, = x1x, and x, =2/x] — 6

are not linear because of the presence of x;x; in the first equation and ,/x; in the second.
A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables—say, xi, ..., X,. An example is

2x1 — X3 + 1.5x3= 8
X1 — 4X3=—7

2
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A solution of the system is a list (sq, 52, ..., 5,) of numbers that makes each equation a
true statement when the values sy, . . ., s, are substituted for xy, . . . , x,,, respectively. For
instance, (5, 6.5, 3) is a solution of system (2) because, when these values are substituted
in (2) for xy, x, x3, respectively, the equations simplify to 8 = 8§ and -7 = —7.

The set of all possible solutions is called the solution set of the linear system. Two
linear systems are called equivalent if they have the same solution set. That is, each
solution of the first system is a solution of the second system, and each solution of the
second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy
because it amounts to finding the intersection of two lines. A typical problem is

X1 —2X2=—1
—X1 +3XZ = 3

The graphs of these equations are lines, which we denote by £; and £,. A pair of numbers
(x1, x,) satisfies both equations in the system if and only if the point (x;, x,) lies on both
£y and £,. In the system above, the solution is the single point (3, 2), as you can easily
verify. See Fig. 1.

FIGURE 1 Exactly one solution.

Of course, two lines need not intersect in a single point—they could be parallel, or
they could coincide and hence “intersect” at every point on the line. Figure 2 shows the
graphs that correspond to the following systems:

(@) x; —2x, =-—1 (b) x; —2x, =-1
X1 +2x,= 3 X1 +2x = 1
X X

2'/ 2+

(a) (b)
FIGURE 2 (a) No solution. (b) Infinitely many solutions.

Figures 1 and 2 illustrate the following general fact about linear systems, to be
verified in Section 1.2.
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A system of linear equations has

1. no solution, or
2. exactly one solution, or

3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one solution or
infinitely many solutions; a system is inconsistent if it has no solution.

Matrix Notation

The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix. Given the system

X1 —2x,+ x3= 0
2x, —8x3= 8 3)
—4x1 + 5x2 +9x3 = -9
with the coefficients of each variable aligned in columns, the matrix

1 -2 1
0 2 =8
-4 5 9

is called the coefficient matrix (or matrix of coefficients) of the system (3), and

1 -2 1 0
0 2 -8 8 4)
-4 5 9 -9

is called the augmented matrix of the system. (The second row here contains a zero be-
cause the second equation could be written as 0 - x; + 2x, — 8x3 = 8.) An augmented
matrix of a system consists of the coefficient matrix with an added column containing
the constants from the right sides of the equations.

The size of a matrix tells how many rows and columns it has. The augmented matrix
(4) above has 3 rows and 4 columns and is called a 3 x 4 (read “3 by 4”) matrix. If m
and n are positive integers, an m x n matrix is a rectangular array of numbers with m
rows and n columns. (The number of rows always comes first.) Matrix notation will
simplify the calculations in the examples that follow.

Solving a Linear System

This section and the next describe an algorithm, or a systematic procedure, for solving
linear systems. The basic strategy is to replace one system with an equivalent system
(i.e., one with the same solution set) that is easier to solve.

Roughly speaking, use the x| term in the first equation of a system to eliminate
the x; terms in the other equations. Then use the x, term in the second equation to
eliminate the x, terms in the other equations, and so on, until you finally obtain a very
simple equivalent system of equations.

Three basic operations are used to simplify a linear system: Replace one equation
by the sum of itself and a multiple of another equation, interchange two equations, and
multiply all the terms in an equation by a nonzero constant. After the first example, you
will see why these three operations do not change the solution set of the system.
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EXAMPLE 1 Solve system (3).

SOLUTION The elimination procedure is shown here with and without matrix notation,
and the results are placed side by side for comparison:

xp =20+ x3= 0 1 2 1 0
2)C2 — 8X3 = & 0 2 -8 8
—4x1 + 5x2 + 9x3 = -9 -4 5 9 -9

Keep x| in the first equation and eliminate it from the other equations. To do so, add 4
times equation 1 to equation 3. After some practice, this type of calculation is usually
performed mentally:

4 - [equation 1]: 4x; —8xy + 4x3= 0
+ [equation 3]: —4x; + 5x3 + 9x3 =-9
[new equation 3]: —3x2 + 13x3 = -9

The result of this calculation is written in place of the original third equation:

X1 —2x+ x3= 0 1 =2 1 0
2X2 — 8X3 = & 0 2 -8 8
—3xy + 13x3 = —9 0 =3 13 -9

Now, multiply equation 2 by 1/2 in order to obtain 1 as the coefficient for x,. (This
calculation will simplify the arithmetic in the next step.)

X1 —2x+ x3= 0 1 =2 1 0
Xy — 4X3 = 4 0 1 —4 4
—3xy + 13x3 = —9 0 =3 13 -9

Use the x; in equation 2 to eliminate the —3x; in equation 3. The “mental” computation
is

3 - [equation 2]: 3x; — 12x3 = 12
+ [equation 3]: —3x, + 13x3 = -9
[new equation 3]: x3= 3

The new system has a triangular form:!

X1—2x+ x3 =0 1 =2 1 0
X2—4X3 =4 0 1 —4 4
0 0 1 3

X3

Eventually, you want to eliminate the —2x; term from equation 1, but it is more efficient
to use the x3 in equation 3 first, to eliminate the —4.x3 and +x3 terms in equations 2 and 1.
The two “mental” calculations are

4. eq. 3]: 4x; =12 —1-[eq. 3]: —x3=-3
+eq.2]: xp—4dx3= 4 +lq 1l x;—2x4+x3= 0
[new eq. 2]:  x» =16 [new eq. 1]:  x; — 2x, =-3

I'The intuitive term triangular will be replaced by a precise term in the next section.
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=/

} (29, 16, 3)

Each of the original equations
determines a plane in three-
dimensional space. The point

(29, 16, 3) lies in all three planes.

It is convenient to combine the results of these two operations:

X1 — 2x, =-3 1 =2 0 -3
X2 = 16 0 1 0 16
Xs= 3 0 0 1 3

Now, having cleaned out the column above the x3 in equation 3, move back to the x; in
equation 2 and use it to eliminate the —2x, above it. Because of the previous work with
X3, there is now no arithmetic involving x; terms. Add 2 times equation 2 to equation
1 and obtain the system:

X =29 1 0 0 29
X =16 0 1 0 16
= 3 0 0 1 3

The work is essentially done. It shows that the only solution of the original system is
(29, 16, 3). However, since there are so many calculations involved, it is a good practice
to check the work. To verify that (29, 16, 3) is a solution, substitute these values into
the left side of the original system, and compute:

(29) —2(16) + (3)=29-32+3=0
2(16) — 8(3) =32—24 =8
—4(29) + 5(16) + 9(3) = —116 + 80 + 27 = —9

The results agree with the right side of the original system, so (29, 16, 3) is a solution
of the system. [ ]

Example 1 illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another
row.?

2. (Interchange) Interchange two rows.
3. (Scaling) Multiply all entries in a row by a nonzero constant.

Row operations can be applied to any matrix, not merely to one that arises as the
augmented matrix of a linear system. Two matrices are called row equivalent if there
is a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are reversible. If two rows are inter-
changed, they can be returned to their original positions by another interchange. If a
row is scaled by a nonzero constant ¢, then multiplying the new row by 1/c produces
the original row. Finally, consider a replacement operation involving two rows—say,
rows 1 and 2—and suppose that ¢ times row 1 is added to row 2 to produce a new row 2.
To “reverse” this operation, add —c times row 1 to (new) row 2 and obtain the original
row 2. See Exercises 29-32 at the end of this section.

2 A common paraphrase of row replacement is “Add to one row a multiple of another row.”
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At the moment, we are interested in row operations on the augmented matrix of a
system of linear equations. Suppose a system is changed to a new one via row opera-
tions. By considering each type of row operation, you can see that any solution of the
original system remains a solution of the new system. Conversely, since the original
system can be produced via row operations on the new system, each solution of the new
system is also a solution of the original system. This discussion justifies the following
statement.

If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations
go quickly. Row operations in the text and exercises will usually be extremely easy to
perform, allowing you to focus on the underlying concepts. Still, you must learn to
perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a
solution set, without completely solving the linear system.

Existence and Uniqueness Questions

Section 1.2 will show why a solution set for a linear system contains either no solutions,
one solution, or infinitely many solutions. Answers to the following two questions will
determine the nature of the solution set for a linear system.

To determine which possibility is true for a particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM
1. Is the system consistent; that is, does at least one solution exist?

2. If a solution exists, is it the only one; that is, is the solution unique?

These two questions will appear throughout the text, in many different guises. This
section and the next will show how to answer these questions via row operations on the
augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:

X1 —2x,+ x3= 0
2X2 — 8X3 = 8
—4x; + 5x, + 9x3 = —9

SOLUTION This is the system from Example 1. Suppose that we have performed the
row operations necessary to obtain the triangular form

X1 —2x+ x3=0 1 =2 1 0
Xy —dx; =4 0 1 —4 4
=3 0 0 1 3

At this point, we know x3. Were we to substitute the value of x3 into equation 2, we
could compute x, and hence could determine x; from equation 1. So a solution exists;
the system is consistent. (In fact, x; is uniquely determined by equation 2 since x3 has
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This system is inconsistent
because there is no point that lies
in all three planes.

only one possible value, and x; is therefore uniquely determined by equation 1. So the
solution is unique.) [ ]

EXAMPLE 3 Determine if the following system is consistent:

Xy — 4)C3 =38
2x1 —3xy + 2x3 =1 (%)
5X1 — 8X2 + 7.X3 =1

SOLUTION The augmented matrix is

0 1 -4 8
2 -3 2 1
5 -8 7 1

To obtain an x; in the first equation, interchange rows 1 and 2:

2 -3 2 1
0o 1 —4 8
5 -8 7 1

To eliminate the 5x; term in the third equation, add —5/2 times row 1 to row 3:

2 -3 2 1
0 1 -4 8 (6)
0 —1/2 2 -3/2

Next, use the x, term in the second equation to eliminate the —(1/2)x, term from the
third equation. Add 1/2 times row 2 to row 3:

2 -3 2 1
0 1 —4 8 @)
0 0 0 5/2

The augmented matrix is now in triangular form. To interpret it correctly, go back to
equation notation:

2x1 —3x2 +2x3= 1
Xy — 4X3 = 8 (8)
0 =502

The equation 0 = 5/2 is a short form of Ox; + Ox, + Ox3; = 5/2. This system in trian-
gular form obviously has a built-in contradiction. There are no values of xy, x,, x3 that
satisfy (8) because the equation 0 = 5/2 is never true. Since (8) and (5) have the same
solution set, the original system is inconsistent (i.e., has no solution). |

Pay close attention to the augmented matrix in (7). Its last row is typical of an
inconsistent system in triangular form.
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— NUMERICAL NOTE

In real-world problems, systems of linear equations are solved by a computer. For
a square coefficient matrix, computer programs nearly always use the elimination
algorithm given here and in Section 1.2, modified slightly for improved accuracy.
The vast majority of linear algebra problems in business and industry are
solved with programs that use floating point arithmetic. Numbers are represented
as decimals &.d; - --d,, x 10", where r is an integer and the number p of digits to
the right of the decimal point is usually between 8 and 16. Arithmetic with such
numbers typically is inexact, because the result must be rounded (or truncated) to
the number of digits stored. “Roundoff error” is also introduced when a number
such as 1/3 is entered into the computer, since its decimal representation must be
approximated by a finite number of digits. Fortunately, inaccuracies in floating
point arithmetic seldom cause problems. The numerical notes in this book will
occasionally warn of issues that you may need to consider later in your career.

PRACTICE PROBLEMS

Throughout the text, practice problems should be attempted before working the exer-
cises. Solutions appear after each exercise set.

1. State in words the next elementary row operation that should be performed on the
system in order to solve it. [More than one answer is possible in (a).]

a. x| +4x, —2x3 + 8x4 = 12 b. x;1 —3x, +5x3 —2x4= 0
Xy — Tx3 + 2x4 = —4 X7 + 8x3 =—4
S5x3 — x4= 7 2x3 - 3
X3 + 3x4 =5
Xy = 1

2. The augmented matrix of a linear system has been transformed by row operations
into the form below. Determine if the system is consistent.

I 5 2 -6
0 4 -7 2
0 0 5 0

3. Is (3,4, —2) a solution of the following system?

5x1 — xo+2x3= 7
—2x1 + 6x7 + 9x3 =
—7x1 4+ 5xp — 3x3 = -7
4. For what values of & and k is the following system consistent?
2X1 — Xy = h
—6x1 +3x2 =k
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1.1 EXERCISES

Solve each system in Exercises 1-4 by using elementary row
operations on the equations or on the augmented matrix. Follow
the systematic elimination procedure described in this section.

1. X + 5)C2 = 7
—2X1 — 7.X2 = -5

2. 3X1 + 6X2 =-3
5X1 =+ 7X2 = 10

3. Find the point (x;, x,) that lies on the line x; + 2x, = 4 and
on the line x; — x, = 1. See the figure.

X2

X1
X +2x,=4

/

4. Find the point of intersection of the lines x; 4+ 2x, = —13
and 3x; —2x, =1

Consider each matrix in Exercises 5 and 6 as the augmented matrix
of a linear system. State in words the next two elementary row
operations that should be performed in the process of solving the
system.

1 -4 =3 0 7
s |0 1 4 0 6
“lo o 1 0 2
0 0 0 1 =5
(1 -6 4 0 —17
6 |0 2 -7 0 4
“lo o 1 2 =3
(0 0 4 1 2]

In Exercises 7-10, the augmented matrix of a linear system has
been reduced by row operations to the form shown. In each case,
continue the appropriate row operations and describe the solution
set of the original system.

17 3 —4

0 1 -1 3
1o 0 o 1
Lo 0 1 -2
(1 =5 4 0 0]
g |0 1 0 1 0
"o 0 3 0 o0
L0 0 0 2 0]
(1 -1 0 0 =57
o |0 1 -2 0 7
"o 0 1 -3 2
(0 0 0 1 4

1 3 0 -2 -7
o 1 0 3 6
10. o o 1 o0 2

o o0 o0 1 =2

Solve the systems in Exercises 11-14.

11. X + 5X3 =—4
X1 +4X2 +3X3 =-2
2X1 + 7)62 + X3 = -2

12. X — 5X2 + 4X3 =-3
2X1 — 7X2 + 3X3 =-2
—2X1 + X2+ 7X3 =-1

13. X1 — 3X3 =
2X1 + 2X2 + 9X3 = 7
X2 + 5)(3 = -2
14. 2X1 - 6X3 = -8
Xy + 2X3 = 3

3x) + 6x, —2x3 = —4

Determine if the systems in Exercises 15 and 16 are consistent.
Do not completely solve the systems.

15. x; — 6x, =5
X, —4x3 4+ x4 =0

—X1+ 6x2 + x3+5x, =3
—Xx3 +5x3 +4x, =0

16. 2x, —4x,=-10
3x, + 3x3 = 0

X3 +4x, = —1

=3x1 + 2% +3x3 + x4 = 5

17. Do the three lines 2x; + 3x, = —1, 6x; 4+ 5x, = 0, and
2x; — 5x, = 7 have a common point of intersection? Ex-
plain.

18. Do the three planes 2x| + 4x; + 4x3 = 4, x, — 2x3 = =2,
and 2x; + 3x, = 0 have at least one common point of inter-
section? Explain.

In Exercises 19-22, determine the value(s) of /& such that the
matrix is the augmented matrix of a consistent linear system.

1 h 4 1 h =5
O w |y 4 o

1 4 =2 —4 12 h
N ]

2 -6 -3
In Exercises 23 and 24, key statements from this section are
either quoted directly, restated slightly (but still true), or altered
in some way that makes them false in some cases. Mark each
statement True or False, and justify your answer. (If true, give the



approximate location where a similar statement appears, or refer
to a definition or theorem. If false, give the location of a statement
that has been quoted or used incorrectly, or cite an example that
shows the statement is not true in all cases.) Similar true/false
questions will appear in many sections of the text.

23. a.

b. A5 x 6 matrix has six rows.

Every elementary row operation is reversible.

c. The solution set of a linear system involving variables

X1,...,X, isalistof numbers (sy, ..., s,) that makes each
equation in the system a true statement when the values
S1,...,8, are substituted for x1, ..., x,, respectively.

d. Two fundamental questions about a linear system involve
existence and uniqueness.

24. a. Two matrices are row equivalent if they have the same

number of rows.
b. Elementary row operations on an augmented matrix never
change the solution set of the associated linear system.
c. Two equivalent linear systems can have different solution
sets.

d. A consistent system of linear equations has one or more
solutions.

25. Find an equation involving g, &, and k that makes
this augmented matrix correspond to a consistent system:

1 4 7 g

0 3 =5 h

-2 5 -9 k

26. Suppose the system below is consistent for all possible values
of f and g. What can you say about the coefficients ¢ and
d? Justify your answer.
2)C1 —+ 4X2 = f
cx;+dx, = g

27. Suppose a, b, ¢, and d are constants such that a is not zero
and the system below is consistent for all possible values of
f and g. What can you say about the numbers a, b, ¢, and
d? Justify your answer.
ax; +bx, = f
cxy+dx, =g

28. Construct three different augmented matrices for linear sys-
tems whose solution setis x; = 3, x, = —2, x3 = —1.

1.1 Systems of Linear Equations 11

In Exercises 29-32, find the elementary row operation that trans-
forms the first matrix into the second, and then find the reverse
row operation that transforms the second matrix into the first.

0o -2 5 3 -1 6

2. |1 3 5[, |1 3 -5
13 -1 6] [0 —2 5
(13 =471 3 —4

3. [0 2 6[,]0 2 6
[0 =5 10] [0 1 -2
(1 =2 1 o] [t =2 1 o0

3. [0 5 =2 8| |0 5 2 8
|4 -1 3 6] |0 7 -1 —6
12 -5 0] [1 2 -5 0

2. |0 1 -3 =20 1 =3 =2
L0 4 —12 7 0O 0 0 15

An important concern in the study of heat transfer is to determine
the steady-state temperature distribution of a thin plate when the
temperature around the boundary is known. Assume the plate
shown in the figure represents a cross section of a metal beam,
with negligible heat flow in the direction perpendicular to the
plate. Let 77, ..., T, denote the temperatures at the four interior
nodes of the mesh in the figure. The temperature at a node is
approximately equal to the average of the four nearest nodes—to
the left, above, to the right, and below.? For instance,

Ti=(10+20+T +Ty)/4, or 4T, —T>— Ty =30

20° 20°

10° L 2 e

10° P e
30° 30°

33. Write a system of four equations whose solution gives esti-
mates for the temperatures 7, ..., Ty.

34. Solve the system of equations from Exercise 33. [Hint: To
speed up the calculations, interchange rows 1 and 4 before
starting “replace” operations.]

3 See Frank M. White, Heat and Mass Transfer (Reading, MA:
Addison-Wesley Publishing, 1991), pp. 145-149.

SOLUTIONS TO PRACTICE PROBLEMS

1. a. For “hand computation,” the best choice is to interchange equations 3 and 4.
Another possibility is to multiply equation 3 by 1/5. Or, replace equation 4 by
its sum with —1/5 times row 3. (In any case, do not use the x; in equation 2 to
eliminate the 4x; in equation 1. Wait until a triangular form has been reached and
the x3 terms and x4 terms have been eliminated from the first two equations.)
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(3,4,-2)

Since (3, 4, —2) satisfies the first
two equations, it is on the line of
the intersection of the first two
planes. Since (3,4, —2) does not
satisfy all three equations, it does
not lie on all three planes.

b. The system is in triangular form. Further simplification begins with the x4 in the
fourth equation. Use the x4 to eliminate all x4 terms above it. The appropriate
step now is to add 2 times equation 4 to equation 1. (After that, move to equation
3, multiply it by 1/2, and then use the equation to eliminate the x3 terms above
it.)

2. The system corresponding to the augmented matrix is
X1 + 5x3 + 2x3 = —6

4)C2 — 7X3 = 2

5X3 = 0

The third equation makes x3 = 0, which is certainly an allowable value for x3. After

eliminating the x3 terms in equations 1 and 2, you could go on to solve for unique

values for x, and x;. Hence a solution exists, and it is unique. Contrast this situation
with that in Example 3.

3. Itis easy to check if a specific list of numbers is a solution. Set x; = 3, x, = 4, and
x3 = —2, and find that
53) - ) +2(-2)= 15— 4—- 4=7
—23)+6(4) +9(-2)= —6+24—-18=0
—73) +54) —3(-2)=-214+20+ 6=5
Although the first two equations are satisfied, the third is not, so (3,4, —2) is not a

solution of the system. Notice the use of parentheses when making the substitutions.
They are strongly recommended as a guard against arithmetic errors.

4. When the second equation is replaced by its sum with 3 times the first equation, the
system becomes
2X1 — Xy = h
0=k+3h

If k + 3h is nonzero, the system has no solution. The system is consistent for any
values of 1 and k that make k + 34 = 0.

1.2 | ROW REDUCTION AND ECHELON FORMS

This section refines the method of Section 1.1 into a row reduction algorithm that will
enable us to analyze any system of linear equations.! By using only the first part of
the algorithm, we will be able to answer the fundamental existence and uniqueness
questions posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an
augmented matrix for a linear system. So the first part of this section concerns an
arbitrary rectangular matrix and begins by introducing two important classes of matrices
that include the “triangular” matrices of Section 1.1. In the definitions that follow, a
nonzero row or column in a matrix means a row or column that contains at least one
nonzero entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero
row).

'The algorithm here is a variant of what is commonly called Gaussian elimination. A similar elimination
method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown
in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss,
discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.
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A rectangular matrix is in echelon form (or row echelon form) if it has the
following three properties:
1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is
in reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

An echelon matrix (respectively, reduced echelon matrix) is one that is in echelon
form (respectively, reduced echelon form). Property 2 says that the leading entries form
an echelon (“steplike”) pattern that moves down and to the right through the matrix.
Property 3 is a simple consequence of property 2, but we include it for emphasis.

The “triangular” matrices of Section 1.1, such as

2 =3 2 1 I 0 0 29
0o 1 —4 8 and 0 1 0 16
0 0 0 5/2 0 0 1 3

are in echelon form. In fact, the second matrix is in reduced echelon form. Here are
additional examples.

EXAMPLE 1 The following matrices are in echelon form. The leading entries (w)
may have any nonzero value; the starred entries (x) may have any value (including zero).

- “ N N 0 ] * * * * * * * *

0 . s N 0 0 0 " * * * * *
0O 0 0 O % * * * *

0 O 0 0

O 0 0 0 o O o0 0 O I * % %
o O O 0 0 0 0 0 " %

The following matrices are in reduced echelon form because the leading entries are 1°s,
and there are 0’s below and above each leading 1.

| 0 % % 0 1 *x 0 0 0 =x x 0 =x
0 1 N N 0O 0 0 1 0O 0 = * 0 x
, o o0 O o0 1 0 =« * 0 %

O 0 0 O
0o 0 0 0 O 0 O O O 1 =* =x 0 =«
o 0 O O O O o o0 1 =«

Any nonzero matrix may be row reduced (that is, transformed by elementary row
operations) into more than one matrix in echelon form, using different sequences of row
operations. However, the reduced echelon form one obtains from a matrix is unique.
The following theorem is proved in Appendix A at the end of the text.

THEOREM 1 Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.
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If a matrix A is row equivalent to an echelon matrix U, we call U an echelon form
(or row echelon form) of A; if U is in reduced echelon form, we call U the reduced
echelon form of A. [Most matrix programs and calculators with matrix capabilities
use the abbreviation RREF for reduced (row) echelon form. Some use REF for (row)
echelon form.]

Pivot Positions

When row operations on a matrix produce an echelon form, further row operations to
obtain the reduced echelon form do not change the positions of the leading entries. Since
the reduced echelon form is unique, the leading entries are always in the same positions
in any echelon form obtained from a given matrix. These leading entries correspond to
leading 1’s in the reduced echelon form.

A pivot position in a matrix A is a location in A that corresponds to a leading 1
in the reduced echelon form of A. A pivot column is a column of A that contains
a pivot position.

In Example 1, the squares (m) identify the pivot positions. Many fundamental
concepts in the first four chapters will be connected in one way or another with pivot
positions in a matrix.

EXAMPLE 2 Row reduce the matrix A below to echelon form, and locate the pivot
columns of A.
0 -3 -6 4 9
-1 -2 -1 3 1
-2 -3 0 3 -1
1 4 5 -9 -7

A=

SOLUTION Use the same basic strategy as in Section 1.1. The top of the leftmost
nonzero column is the first pivot position. A nonzero entry, or pivot, must be placed
in this position. A good choice is to interchange rows 1 and 4 (because the mental
computations in the next step will not involve fractions).

Pivot
lﬂ 5 -9 -7
-1 -2 -1 3 1
-2 =3 0 3 -1
0 -3 -6 4 9
L Pivot column

Create zeros below the pivot, 1, by adding multiples of the first row to the rows below,
and obtain matrix (1) below. The pivot position in the second row must be as far left
as possible—namely, in the second column. Choose the 2 in this position as the next

pivot.
Pivot
4]5 -9 -7
2 4 —6 —6

5 10 —15 —15 &y
3 6 4 9

SO O =

t Next pivot column
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Add —5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4.

1 4 5 -9 -7
0 2 4 —6 —6
0o 0 0 0 O 2)
0O 0 0 -5 0

The matrix in (2) is different from any encountered in Section 1.1. There is no way to
create a leading entry in column 3! (We can’t use row 1 or 2 because doing so would
destroy the echelon arrangement of the leading entries already produced.) However, if
we interchange rows 3 and 4, we can produce a leading entry in column 4.

Pivot
1 4 5 -9 -7 [ I * ok
0 2 4 -6 -6 General form: 0 N * * *
0 0 0 -5 0 ’ 0 0 0 ] *
0 0 0 O 0 0 0 0 0 0
t t t Pivot columns

The matrix is in echelon form and thus reveals that columns 1, 2, and 4 of A are pivot

columns.
Pivot positions
OJ—3J—6 419

—1 —2<—1 3|1
A=l 5 3 0 3441 )

1 4 5 -9 -7

t 4 t Pivot columns |

A pivot, as illustrated in Example 2, is a nonzero number in a pivot position that is
used as needed to create zeros via row operations. The pivots in Example 2 were 1, 2,
and —5. Notice that these numbers are not the same as the actual elements of A in the
highlighted pivot positions shown in (3).

With Example 2 as a guide, we are ready to describe an efficient procedure for
transforming a matrix into an echelon or reduced echelon matrix. Careful study and
mastery of this procedure now will pay rich dividends later in the course.

The Row Reduction Algorithm

The algorithm that follows consists of four steps, and it produces a matrix in echelon
form. A fifth step produces a matrix in reduced echelon form. We illustrate the algorithm
by an example.

EXAMPLE 3 Apply elementary row operations to transform the following matrix
first into echelon form and then into reduced echelon form:

0O 3 -6 6 4 =5

3 -7 8 =5 8 9

3 -9 12 -9 6 15

SOLUTION

STEP 1

Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.
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0O 3 -6 6 4 -5
3 -7 8§ =5 8 9
3 -9 12 -9 6 15
t Pivot column

STEP 2

Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

Pivot
3<Jj9 12 =9 6 15

3 =7 8§ =5 8 9
0o 3 -6 6 4 =5

STEP 3

Use row replacement operations to create zeros in all positions below the pivot.

As a preliminary step, we could divide the top row by the pivot, 3. But with two 3’s in
column 1, it is just as easy to add —1 times row 1 to row 2.

Pivot
3<-9 12 -9 6 15
o 2 -4 4 2 -6
o 3 -6 6 4 =5

STEP 4

Cover (or ignore) the row containing the pivot position and cover all rows, if any,
above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2,
select as a pivot the “top” entry in that column.

Pivot
3 -9 12 -9 6 15
0O 2<—-4 4 2 —6
0 3 -6 6 4 -5

t New pivot column

For step 3, we could insert an optional step of dividing the “top” row of the submatrix by
the pivot, 2. Instead, we add —3/2 times the “top” row to the row below. This produces

3 -9 12 -9 6 15
0o 2 -4 4 2 -6
0 O 0o o0 1 4
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When we cover the row containing the second pivot position for step 4, we are left with
a new submatrix having only one row:

3 -9 12 -9 6 15
0 2 -4 4 2 —6
0

0 0 0 1 4
1 Pivot

Steps 1-3 require no work for this submatrix, and we have reached an echelon form of
the full matrix. If we want the reduced echelon form, we perform one more step.

STEP 5

Beginning with the rightmost pivot and working upward and to the left, create
zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row
3torows 2 and 1.

3 -9 12 -9 0 -9 <« Row 1 + (—6) -tow 3
0O 2 —4 4 0 -—14 <~ Row 2 + (=2) - row 3
o 0 0 0 1 4

The next pivot is in row 2. Scale this row, dividing by the pivot.
3 -9 12 -9 0 -9
o 1 -2 2 0 -7 < Row scaled by 1
o 0 0O o 1 4

Create a zero in column 2 by adding 9 times row 2 to row 1.

3 0-6 9 0 -72 <~ Row 1 + (9) - row 2
o 1 -2 2 0 -7
o 0 0 o0 1 4

Finally, scale row 1, dividing by the pivot, 3.

1 0 -2 3 0 —-24 < Row scaled by 1

This is the reduced echelon form of the original matrix. [ |

The combination of steps 1-4 is called the forward phase of the row reduction
algorithm. Step 5, which produces the unique reduced echelon form, is called the
backward phase.

r— NUMERICAL NOTE

In step 2 above, a computer program usually selects as a pivot the entry in a
column having the largest absolute value. This strategy, called partial pivoting,
is used because it reduces roundoff errors in the calculations.
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Solutions of Linear Systems

The row reduction algorithm leads directly to an explicit description of the solution set
of a linear system when the algorithm is applied to the augmented matrix of the system.

Suppose, for example, that the augmented matrix of a linear system has been
changed into the equivalent reduced echelon form

I 0 -5 1
0o 1 1 4
0 0 0 0

There are three variables because the augmented matrix has four columns. The
associated system of equations is

X1 —5X3=1
X2+ x3=4 “)
0 =0

The variables x; and x, corresponding to pivot columns in the matrix are called basic
variables.? The other variable, x3, is called a free variable.

Whenever a system is consistent, as in (4), the solution set can be described
explicitly by solving the reduced system of equations for the basic variables in terms of
the free variables. This operation is possible because the reduced echelon form places
each basic variable in one and only one equation. In (4), solve the first equation for x;
and the second for x,. (Ignore the third equation; it offers no restriction on the variables.)

X1 =1+ 5x3
Xy = 4 — X3 (5)
x3 is free

The statement “x3 is free” means that you are free to choose any value for x3. Once
that is done, the formulas in (5) determine the values for x; and x,. For instance, when
x3 = 0, the solution is (1, 4,0); when x3 = 1, the solution is (6,3, 1). Each different
choice of x3 determines a (different) solution of the system, and every solution of the
system is determined by a choice of x3.

EXAMPLE 4 Find the general solution of the linear system whose augmented ma-
trix has been reduced to

1 6 2 -5 -2 —4

o 0 2 -8 -1 3

o o0 o o 1 7
SOLUTION The matrix is in echelon form, but we want the reduced echelon form

before solving for the basic variables. The row reduction is completed next. The symbol
~ before a matrix indicates that the matrix is row equivalent to the preceding matrix.

1T 6 2 -5 -2 47 [1 6 2 -5 0 10]
0 0 2 -8 -1 3|~l0 0 2 -8 0 10
o o o o 1 7/ [0 0 O O 1 7]
1 6 2 -5 0 107 [1 6 0 3 0 0
~l0 0 1 -4 0 5|~ 0 1 -4 0 5
o o o 0 1 7] [0 0 0 O 1 7]

2Some texts use the term leading variables because they correspond to the columns containing leading
entries.



1.2 Row Reduction and Echelon Forms 19

There are five variables because the augmented matrix has six columns. The associated
system now is

X1 + 6x7 + 3x4 =0
X3 — 4X4 =5 (6)
X5 = 7

The pivot columns of the matrix are 1, 3, and 5, so the basic variables are x;, x3, and
xs5. The remaining variables, x, and x4, must be free. Solve for the basic variables to
obtain the general solution:

X1 = —6)(72 — 3)(74

X 1s free

X3 =5+4x, (7

X4 1s free

X5 = 7

Note that the value of x5 is already fixed by the third equation in system (6). [ |

Parametric Descriptions of Solution Sets

The descriptions in (5) and (7) are parametric descriptions of solution sets in which
the free variables act as parameters. Solving a system amounts to finding a parametric
description of the solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution set has many
parametric descriptions. For instance, in system (4), we may add 5 times equation 2 to
equation 1 and obtain the equivalent system

X1 + 5x» =21
X2+X3= 4

We could treat x, as a parameter and solve for x; and x3 in terms of x;, and we would
have an accurate description of the solution set. However, to be consistent, we make the
(arbitrary) convention of always using the free variables as the parameters for describing
a solution set. (The answer section at the end of the text also reflects this convention.)

Whenever a system is inconsistent, the solution set is empty, even when the system
has free variables. In this case, the solution set has no parametric representation.

Back-Substitution

Consider the following system, whose augmented matrix is in echelon form but is not
in reduced echelon form:

X; — Txy + 2x3 — 5x4 + 8x5 = 10
Xy —3x3 +3x4 + x5 =-5
X4 — X5 = 4

A computer program would solve this system by back-substitution, rather than by com-
puting the reduced echelon form. That is, the program would solve equation 3 for x4 in
terms of x5 and substitute the expression for x4 into equation 2, solve equation 2 for x»,
and then substitute the expressions for x, and x4 into equation 1 and solve for x;.

Our matrix format for the backward phase of row reduction, which produces the re-
duced echelon form, has the same number of arithmetic operations as back-substitution.
But the discipline of the matrix format substantially reduces the likelihood of errors
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during hand computations. The best strategy is to use only the reduced echelon form
to solve a system! The Study Guide that accompanies this text offers several helpful
suggestions for performing row operations accurately and rapidly.

— NUMERICAL NOTE

In general, the forward phase of row reduction takes much longer than the
backward phase. An algorithm for solving a system is usually measured in flops
(or floating point operations). A flop is one arithmetic operation (4, —, *, /)
on two real floating point numbers.? For an n x (n 4+ 1) matrix, the reduction
to echelon form can take 2n°/3 + n%/2 — 7n/6 flops (which is approximately
2n3/3 flops when n is moderately large—say, n > 30). In contrast, further
reduction to reduced echelon form needs at most 1 flops.

Existence and Uniqueness Questions

Although a nonreduced echelon form is a poor tool for solving a system, this form is
just the right device for answering two fundamental questions posed in Section 1.1.

EXAMPLE 5 Determine the existence and uniqueness of the solutions to the system

3xy — 6x3 + 6x4 + 4x5 = =5
3X1 — 7X2 + 8)63 — 5)64 + 8.X5 = 9
3x1 — 9xp + 12x3 — 9x4 + 6x5 = 15

SOLUTION The augmented matrix of this system was row reduced in Example 3 to

3 -9 12 -9 6 15
0 2 —4 4 2 —6 (8)
0 0 0 0 1 4

The basic variables are x;, x,, and xs; the free variables are x3 and x4. There is no
equation such as 0 = 1 that would indicate an inconsistent system, so we could use
back-substitution to find a solution. But the existence of a solution is already clear
in (8). Also, the solution is not unique because there are free variables. Each different
choice of x3 and x4 determines a different solution. Thus the system has infinitely many
solutions. [ |

When a system is in echelon form and contains no equation of the form 0 = b, with
b nonzero, every nonzero equation contains a basic variable with a nonzero coefficient.
Either the basic variables are completely determined (with no free variables) or at least
one of the basic variables may be expressed in terms of one or more free variables. In
the former case, there is a unique solution; in the latter case, there are infinitely many
solutions (one for each choice of values for the free variables).

These remarks justify the following theorem.

3Traditionally, a flop was only a multiplication or division, because addition and subtraction took much less
time and could be ignored. The definition of flop given here is preferred now, as a result of advances in
computer architecture. See Golub and Van Loan, Matrix Computations, 2nd ed. (Baltimore: The Johns
Hopkins Press, 1989), pp. 19-20.
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THEOREM 2 Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column—that is, if and only if an echelon form of the
augmented matrix has no row of the form

[0 .-« 0 b] with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique
solution, when there are no free variables, or (ii) infinitely many solutions, when
there is at least one free variable.

The following procedure outlines how to find and describe all solutions of a linear
system.

USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM
1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form. Decide whether the system is consistent. If there is no solution,
stop; otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.
4. Write the system of equations corresponding to the matrix obtained in step 3.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is
expressed in terms of any free variables appearing in the equation.

PRACTICE PROBLEMS
1. Find the general solution of the linear system whose augmented matrix is
1 -3 =5 0
o 1 1 3
2. Find the general solution of the system

X1 —2x, — x3+3x4=0
—2x1 + 4xy + 5x3 — 5x4 =3
3x1 —6xp —6x3 + 8x4 =2

EXERCISES

In Exercises 1 and 2, determine which matrices are in reduced
echelon form and which others are only in echelon form.

S = O

S O = O
S O = O
- o O O
(==l eR
S O N =
SO OO
S W N =
SN =

| I
=3
1
S O =
O = O
S = =
— o
| I
o
[ e e
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1o 1 1 10 0 0
2 [0 1 1 1| b |0 2 0 0
0 0 0 0] 0 0 1 1
[0 0 0 0]
w20 0
“lo 0o 1 0
L0 0 0 1|
o1 1 11
P I S N
"o 0o 0o o 1
L0 0 0 0 0

Row reduce the matrices in Exercises 3 and 4 to reduced echelon
form. Circle the pivot positions in the final matrix and in the
original matrix, and list the pivot columns.

1 2 4 8 1 2 4 5
3. 12 4 6 8 4. |2 4 5 4
36 9 12 4 5 4 2

5. Describe the possible echelon forms of a nonzero 2 x 2
matrix. Use the symbols ®, %, and 0, as in the first part of
Example 1.

6. Repeat Exercise 5 for a nonzero 3 x 2 matrix.

Find the general solutions of the systems whose augmented ma-
trices are given in Exercises 7-14.

103 4 7 1 -3 0 -5
13 9 7 6] 815 7 o 9]
[0 1 -2 3 1 =2 -1 4
ol R —6] 015 4 =5 6]
Hsa o 13 0
1. [9 -6 12 0 12.
6 4 5 0 0 0 0 1 -7
- (0 0 0 0 1
1 -3 0 -1 0 -2
0 1 0 0 —4 1
Bto 00 1 9 4
L0 0 0 0 0 0]
(10 -5 0 -8 37
0 1 4 -1 0 6
Y99 0 0 0 1 o0
L0 0 0 0 0 0]

Exercises 15 and 16 use the notation of Example 1 for matrices
in echelon form. Suppose each matrix represents the augmented
matrix for a system of linear equations. In each case, determine if
the system is consistent. If the system is consistent, determine if
the solution is unique.

% * *
15. a. 0 u * *
0 0 0 0

0 ] * * *

b. 0 0 ] * *

0o 0 0 ] 0

u *
16. a 0 ] *
0 0
] * * * *
b. 0 0 u * *
0 0 0 ] *

In Exercises 17 and 18, determine the value(s) of /& such that the
matrix is the augmented matrix of a consistent linear system.

1 —1 4 1 -3 1
17, [_2 ! h} 18, [h : _2]
In Exercises 19 and 20, choose / and k such that the system has (a)

no solution, (b) a unique solution, and (c¢) many solutions. Give
separate answers for each part.

19. x| + hX2 =2 20.
dx, + 8xy, =k

X1 —3X2:1
2X1+hX2:k

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.*

21. a. In some cases, a matrix may be row reduced to more
than one matrix in reduced echelon form, using different

sequences of row operations.

b. The row reduction algorithm applies only to augmented
matrices for a linear system.

c. A basic variable in a linear system is a variable that
corresponds to a pivot column in the coefficient matrix.

d. Finding a parametric description of the solution set of a
linear system is the same as solving the system.

e. If one row in an echelon form of an augmented matrix
is[0 0 0 5 0], then the associated linear system is
inconsistent.

22,

I

The reduced echelon form of a matrix is unique.

b. If every column of an augmented matrix contains a pivot,
then the corresponding system is consistent.

c. The pivot positions in a matrix depend on whether row
interchanges are used in the row reduction process.

d. A general solution of a system is an explicit description
of all solutions of the system.

e. Whenever a system has free variables, the solution set
contains many solutions.

23. Suppose the coefficient matrix of a linear system of four
equations in four variables has a pivot in each column. Ex-
plain why the system has a unique solution.

24. Suppose a system of linear equations has a 3 x 5 augmented
matrix whose fifth column is not a pivot column. Is the
system consistent? Why (or why not)?

4 True/false questions of this type will appear in many sections. Methods
for justifying your answers were described before Exercises 23 and 24 in
Section 1.1.



25. Suppose the coefficient matrix of a system of linear equations
has a pivot position in every row. Explain why the system is
consistent.

26. Suppose a 3 x 5 coefficient matrix for a system has three
pivot columns. Is the system consistent? Why or why not?

27. Restate the last sentence in Theorem 2 using the concept of
pivot columns: “If a linear system is consistent, then the
solution is unique if and only if ”

28. What would you have to know about the pivot columns in an
augmented matrix in order to know that the linear system is
consistent and has a unique solution?

29. A system of linear equations with fewer equations than un-
knowns is sometimes called an underdetermined system. Can
such a system have a unique solution? Explain.

30. Give an example of an inconsistent underdetermined system
of two equations in three unknowns.

31. A system of linear equations with more equations than un-
knowns is sometimes called an overdetermined system. Can
such a system be consistent? Illustrate your answer with a
specific system of three equations in two unknowns.

32. Suppose an n X (n + 1) matrix is row reduced to reduced
echelon form. Approximately what fraction of the total
number of operations (flops) is involved in the backward
phase of the reduction when n = 20? when n = 200?

Suppose experimental data are represented by a set of points in the
plane. An interpolating polynomial for the data is a polynomial
whose graph passes through every point. In scientific work,
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such a polynomial can be used, for example, to estimate values
between the known data points. Another use is to create curves for
graphical images on a computer screen. One method for finding an
interpolating polynomial is to solve a system of linear equations.

33. Find the interpolating polynomial p(t) = ay + at + a,t*
for the data (1, 6), (2, 15), (3,28). That is, find ay, a;, and
a, such that
ag + ai(1) + ax (1) 6
a4+ a1(2) + a2(2)* = 15
ap +ai(3) +ax(3)> =28

34. [M] In a wind tunnel experiment, the force on a projectile
due to air resistance was measured at different velocities:

Velocity (100 ft/sec) 0 2 4 6 8 10
Force (100 1b) 0 290 14.8 39.6 743 119

Find an interpolating polynomial for these data and estimate
the force on the projectile when the projectile is traveling
at 750 ft/sec. Use p(t) = ag + at + a>t> + ast>® + aut* +
ast®. What happens if you try to use a polynomial of degree
less than 5? (Try a cubic polynomial, for instance.)’

5 Exercises marked with the symbol [M] are designed to be worked with
the aid of a “Matrix program” (a computer program, such as
MATLAB®, Maple™, Mathernatica®, MathCad®, or Derive™, or a
programmable calculator with matrix capabilities, such as those
manufactured by Texas Instruments or Hewlett-Packard).

SOLUTIONS TO PRACTICE PROBLEMS

1. The reduced echelon form of the augmented matrix and the corresponding system

are

o

The general solution of the
system of equations is the line of
intersection of the two planes.

—2X3=9

X2+ x3=3

-2 9 X1
1 3 :| and

The basic variables are x; and x,, and the general solution is

X1:9+2)C3
XQ=3—X3

X3 is free

Note: It is essential that the general solution describe each variable, with any param-
eters clearly identified. The following statement does not describe the solution:

X1 =94+ 2x3
Xy = 3— X3
x3 = 3 — X, Incorrect solution

This description implies that x, and x3 are both free, which certainly is not the case.
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2. Row reduce the system’s augmented matrix:

1 =2 -1 3 0 1 -2 -1 3 0
-2 4 5 -5 3|~l0 0 3 1 3
3 -6 -6 8 2 (0 0 =3 -1 2
1 -2 -1 3 0]
~10 0o 3 1 3

(0 0 0 0 5]

This echelon matrix shows that the system is inconsistent, because its rightmost
column is a pivot column; the third row corresponds to the equation 0 = 5. There
is no need to perform any more row operations. Note that the presence of the free
variables in this problem is irrelevant because the system is inconsistent.

1.3 VECTOR EQUATIONS

Important properties of linear systems can be described with the concept and notation
of vectors. This section connects equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will discuss in Chapter 4, “Vector Spaces.” Until then, vector will mean an
ordered list of numbers. This simple idea enables us to get to interesting and important
applications as quickly as possible.

Vectors in R2

A matrix with only one column is called a column vector, or simply a vector. Examples
of vectors with two entries are

S S

where w; and w, are any real numbers. The set of all vectors with two entries is denoted
by R? (read “r-two”). The R stands for the real numbers that appear as entries in the
vectors, and the exponent 2 indicates that each vector contains two entries.!

Two vectors in R? are equal if and only if their corresponding entries are equal.

Thus [‘7‘] and [Z} are not equal, because vectors in R? are ordered pairs of real

numbers.
Given two vectors u and v in R?, their sum is the vector u + v obtained by adding
corresponding entries of u and v. For example,

BRINHYENH

Given a vector u and a real number ¢, the scalar multiple of u by c¢ is the vector cu
obtained by multiplying each entry in u by c. For instance,

. 3 3 15
if u—|:_1:| and ¢ =5, then cu—5|:_li|—|:_5j|

'Most of the text concerns vectors and matrices that have only real entries. However, all definitions and
theorems in Chapters 1-5, and in most of the rest of the text, remain valid if the entries are complex
numbers. Complex vectors and matrices arise naturally, for example, in electrical engineering and physics.
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The number ¢ in cu is called a scalar; it is written in lightface type to distinguish it from
the boldface vector u.

The operations of scalar multiplication and vector addition can be combined, as in
the following example.

EXAMPLE 1 Givenu = [_;} andv = |:_§i|, find 4u, (—3)v, and 4u + (—3)v.

w=| ] =[]
4u+(—3)v=[_g}+[‘1§]=[ﬂ T

Sometimes, for convenience (and also to save space), this text may write a column

SOLUTION

and

vector such as |: _3 :| in the form (3, —1). In this case, the parentheses and the comma

1
distinguish the vector (3, —1) from the 1 X 2 row matrix [ 3 -1 ], written with brackets

and no comma. Thus
3
2]+ -

because the matrices have different shapes, even though they have the same entries.

Geometric Descriptions of R?

Consider a rectangular coordinate system in the plane. Because each point in the plane
is determined by an ordered pair of numbers, we can identify a geometric point (a, b)

with the column vector [a ] So we may regard R? as the set of all points in the plane.

b
See Fig. 1.

R X

°(2,2) °(2,2)
Xl Xl
° [ ) () ()
(-2.-1 3,-1 (-2,-1) 3,-1)
FIGURE 1 Vectors as points. FIGURE 2 Vectors with arrows.

The geometric visualization of a vector such as |: _3 i| is often aided by including

1
an arrow (directed line segment) from the origin (0, 0) to the point (3, —1), as in Fig. 2.
In this case, the individual points along the arrow itself have no special significance.?

The sum of two vectors has a useful geometric representation. The following rule
can be verified by analytic geometry.

2In physics, arrows can represent forces and usually are free to move about in space. This interpretation of
vectors will be discussed in Section 4.1.
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Parallelogram Rule for Addition

If u and v in R? are represented as points in the plane, then u + v corresponds to
the fourth vertex of the parallelogram whose other vertices are u, 0, and v. See
Fig. 3.

X

eu+V

0 1

FIGURE 3 The parallelogram rule.

EXAMPLE 2 The vectorsu = [;},V = [_?},andu—{—v = |:_‘3‘i| are displayed

in Fig. 4.

x
2
u+v L

-+ oll
ve aF

1+ —t—1x
-6 2
FIGURE 4

The next example illustrates the fact that the set of all scalar multiples of one fixed
nonzero vector is a line through the origin, (0, 0).

EXAMPLE 3 Letu= |:_? } Display the vectors u, 2u, and —%u on a graph.

SOLUTION See Fig. 5, where u, 2u = [_§j|, and —%u = [2_/§j| are displayed. The

arrow for 2u is twice as long as the arrow for u, and the arrows point in the same
direction. The arrow for —%u is two-thirds the length of the arrow for u, and the arrows
point in opposite directions. In general, the length of the arrow for cu is |¢]| times the

Ou

2u

Typical multiples of u The set of all multiples of u

FIGURE 5
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X

FIGURE 6

Scalar multiples .

FIGURE 7
Vector subtraction.
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length of the arrow for u. [Recall that the length of the line segment from (0, 0) to (a, b)
is ~/a* + b%. We shall discuss this further in Chapter 6.] [ |

Vectors in R3

Vectors in R? are 3 x 1 column matrices with three entries. They are represented geo-

metrically by points in a three-dimensional coordinate space, with arrows from the ori-
2

gin sometimes included for visual clarity. The vectors a = | 3 | and 2a are displayed
4

in Fig. 6.

Vectors in R”

If n is a positive integer, R” (read “r-n”) denotes the collection of all lists (or ordered
n-tuples) of n real numbers, usually written as 7 x 1 column matrices, such as

uj
Us

Up

The vector whose entries are all zero is called the zero vector and is denoted by 0.
(The number of entries in 0 will be clear from the context.)

Equality of vectors in R” and the operations of scalar multiplication and vector
addition in R” are defined entry by entry just as in R, These operations on vectors
have the following properties, which can be verified directly from the corresponding
properties for real numbers. See Practice Problem 1 and Exercises 33 and 34 at the end
of this section.

Algebraic Properties of R”
For all u, v, w in R” and all scalars ¢ and d:

(u+v=v+u (V) c(a+v)=cu+cv
(i) m+v)+w=u+ (v+w) vi) (c+d)u=cu+du
(i) u+0=0+u=u (vii) ¢(du) = (cd)(u)
@iv) u+ (—u) = —u+u =0, (viii) lu = u

where —u denotes (—1)u

For simplicity of notation, a vector such as u + (—1)v is often written as u —v.
Figure 7 shows u — v as the sum of u and —v.

Linear Combinations

Given vectors v, va, ..., V, in R" and given scalars ¢y, ¢s, .. ., ¢,, the vector y defined
by

y=cvi+--+cpv,
is called a linear combination of vy,...,v, with weights c,,...,c,. Property (ii)
above permits us to omit parentheses when forming such a linear combination. The
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FIGURE 9

weights in a linear combination can be any real numbers, including zero. For example,
some linear combinations of vectors v; and v, are

V3V + v, %V] (= %V] +0vy), and O (= 0v; + 0vy)

EXAMPLE 4 Figure 8 identifies selected linear combinations of v; = |:_1 i| and

V) = 1

v; and v;.) Estimate the linear combinations of v; and v, that generate the vectors u
and w.

2 ] (Note that sets of parallel grid lines are drawn through integer multiples of

FIGURE 8 Linear combinations of v; and v,.

SOLUTION The parallelogram rule shows that u is the sum of 3v; and —2v;; that is,
u=23v; —2v,

This expression for u can be interpreted as instructions for traveling from the origin
to u along two straight paths. First, travel 3 units in the v, direction to 3v;, and then
travel —2 units in the v, direction (parallel to the line through v, and 0). Next, although
the vector w is not on a grid line, w appears to be about halfway between two pairs of
grid lines, at the vertex of a parallelogram determined by (5/2)v; and (—1/2)v,. (See
Fig. 9.) Thus a reasonable estimate for w is
W= %V] — %vz u
The next example connects a problem about linear combinations to the fundamental
existence question studied in Sections 1.1 and 1.2.

1 2 7
EXAMPLE 5 Letaj=| -2 |,aa=|5 |,andb = 4 |. Determine whether
-5 6 -3

b can be generated (or written) as a linear combination of a; and a,. That is, determine
whether weights x| and x, exist such that

xia; +xa, =b (D
If vector equation (1) has a solution, find it.

SOLUTION Use the definitions of scalar multiplication and vector addition to rewrite
the vector equation

1 2 7
Xi| 2 |4+x|5|= 4
) 6 -3

t t t

a

&0
S
[=n
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which is the same as

X1 2X2 7
=2x1 |+ | 5x | = 4
—5X1 6X2 -3
and
X1+ 2xo 7
=2x1+5x, | = 4 ()
—5x1 + 6x2 -3

The vectors on the left and right sides of (2) are equal if and only if their corresponding
entries are both equal. That is, x; and x, make the vector equation (1) true if and only
if x| and x; satisfy the system
X1 +2x, = 7
—2x1 +5x, = 4 3)
—5x1 + 6x, = =3

To solve this system, row reduce the augmented matrix of the system as follows:3

1 2 7 1 2 7 1 2 7 1 0 3
-2 5 4|~]10 9 18| ~[0 I 2|~]0 1 2
-5 6 =3 0 16 32 0 16 32 0 0 0

The solution of (3) is x; = 3 and x, = 2. Hence b is a linear combination of a; and a,,
with weights x; = 3 and x, = 2. That is,

1 2 7
3 2| +2(5 ]| = 4 [ |
-5 6 =3

Observe in Example 5 that the original vectors aj, a,, and b are the columns of the
augmented matrix that we row reduced:

1 2 7
-2 5 4
-5 6 -3
bt
a a b
For brevity, write this matrix in a way that identifies its columns —namely,
[a1 a; b] “)

It is clear how to write this augmented matrix immediately from vector equation (1),

without going through the intermediate steps of Example 5. Take the vectors in the

order in which they appear in (1) and put them into the columns of a matrix as in (4).
The discussion above is easily modified to establish the following fundamental fact.

A vector equation
xia; + Xo@ + -+ x,a, = b

has the same solution set as the linear system whose augmented matrix is
[ai a - a, b] ®)

In particular, b can be generated by a linear combination of a, . . ., a, if and only
if there exists a solution to the linear system corresponding to the matrix (5).

3The symbol ~ between matrices denotes row equivalence (Section 1.2).
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One of the key ideas in linear algebra is to study the set of all vectors that can be
generated or written as a linear combination of a fixed set {vi, ..., v,} of vectors.

If vi,...,v, are in R”, then the set of all linear combinations of vy,...,v,
is denoted by Span{v;,...,v,} and is called the subset of R” spanned (or
generated) by vi,...,v,. That is, Span{vy,...,v,} is the collection of all
vectors that can be written in the form

C1V1 +CVy + -+ CpVp

with ¢y, ..., ¢, scalars.

Asking whether a vector b is in Span {vy,...,v,} amounts to asking whether the
vector equation

X1vp +Xovp + -+ x,v, =b

has a solution, or, equivalently, asking whether the linear system with augmented matrix
[vi --- v, b]hasasolution.

Note that Span{v;,...,v,} contains every scalar multiple of v, (for exam-
ple), since ¢vy = ¢vy + 0vy +--- + 0Ov,. In particular, the zero vector must be in
Span{vy,...,v,}.

A Geometric Description of Span{v} and Span{u, v}

Let v be a nonzero vector in R3. Then Span {v} is the set of all scalar multiples of v,
which is the set of points on the line in R? through v and 0. See Fig. 10.

If u and v are nonzero vectors in R, with v not a multiple of u, then Span {u, v} is
the plane in R? that contains u, v, and 0. In particular, Span {u, v} contains the line in
R3 through u and 0 and the line through v and 0 . See Fig. 11.

X

m / /
’7 ST
[/
. [T
A 2 | w

X

.

2

FIGURE 10 Span{v} as a line FIGURE 11 Span{u, v} asa
through the origin. plane through the origin.
1 5 -3
EXAMPLE 6 Let aj=| -2, aa=| —13 |, and b= 8 |. Then
3 -3 1

Span {a;, a,} is a plane through the origin in R3. Is b in that plane?
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SOLUTION Does the equation x;a; + xpa, = b have a solution? To answer this, row
reduce the augmented matrix [a; a, b]:

1 5 =3 1 5 =3 1 5 =3

-2 —13 8|~]0 =3 2(~10 =3 2

3 -3 1 0 —18 10 0O 0 -2
The third equation is 0 = —2, which shows that the system has no solution. The vector
equation xja; + x,a, = b has no solution, and so b is not in Span {a;, a,}. |

Linear Combinations in Applications

The final example shows how scalar multiples and linear combinations can arise when
a quantity such as “cost” is broken down into several categories. The basic principle for
the example concerns the cost of producing several units of an item when the cost per

unit is known:

number| | cost | _ |total

of units | | perunit{ ~ | cost
EXAMPLE 7 A company manufactures two products. For $1.00 worth of product
B, the company spends $.45 on materials, $.25 on labor, and $.15 on overhead. For

$1.00 worth of product C, the company spends $.40 on materials, $.30 on labor, and
$.15 on overhead. Let

45 40
b=| .25 and c¢=1 .30
.15 15

Then b and c represent the “costs per dollar of income” for the two products.

a. What economic interpretation can be given to the vector 100b?

b. Suppose the company wishes to manufacture x; dollars worth of product B and
X, dollars worth of product C. Give a vector that describes the various costs the
company will have (for materials, labor, and overhead).

SOLUTION
a. Compute
45 45
100b = 100| .25 | = | 25
15 15

The vector 100b lists the various costs for producing $100 worth of product
B —namely, $45 for materials, $25 for labor, and $15 for overhead.

b. The costs of manufacturing x; dollars worth of B are given by the vector x;b, and
the costs of manufacturing x, dollars worth of C are given by x,¢. Hence the total
costs for both products are given by the vector x;b + xc. [ ]

PRACTICE PROBLEMS

1. Prove thatu + v = v + u for any u and v in R".
2. For what value(s) of & will y be in Span{vy, v, v3} if
1 5 -3 —4
vi=| -1/, v, = | —4 |, V3 = 1|, and y= 3
-2 -7 0 h
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1.3 EXERCISES

In Exercises 1 and 2, compute u 4 v and u — 2v.

ve=[S]v= 3] 2= 3=

In Exercises 3 and 4, display the following vectors using arrows
on an xy-graph: u, v, —v, —2v,u + v, u — v, and u — 2v. Notice
that u — v is the vertex of a parallelogram whose other vertices are

u, 0, and —v.

3. uand v as in Exercise 1 4. uand v as in Exercise 2

In Exercises 5 and 6, write a system of equations that is equivalent

to the given vector equation.

3 5 2
5. x| 2| +x, 0f=1]-3
8 -9 8

o [ 3] 2] [ 3]-[2]

Use the accompanying figure to write each vector listed in Exer-
cises 7 and 8 as a linear combination of u and v. Is every vector

in R? a linear combination of u and v?

7. Vectors a, b, ¢, and d

8. Vectors w, X, y, and z

In Exercises 9 and 10, write a vector equation that is equivalent to

the given system of equations.
9. Xy + 5)C3 =0 10.

4x; + 6x, — x3=0
—X1+3X2 —8X3:0

3x1 — 2X2 + 4X3 =3
—2X1 — 7X2 + 5)63 =1
5)C1 + 4X2 — 3)63 =2

In Exercises 11 and 12, determine if b is a linear combination of

aj, a,, and as.

1 0 5 2

11. a = -2 , Ay = 1 , a3 = —6 ,b: —1
L0 2 | | 8] | 6]
M1 —27] =6 117

12. a, = 0 , Ay = 3 ,a3 = 7 ,b= -5
1 -2 | | 5] | 9]

In Exercises 13 and 14, determine if b is a linear combination of
the vectors formed from the columns of the matrix A.

13.

14.

15.

16.

1 -4 2 3
A= 0 3 5(,b=]|-7
-2 8 —4 =N
1 0 57 M 27
A=|-2 1 -6 |,b=]| -1
. 0 2 8] | 6]
1] M5 37
Leta; = 3 |,aa=| —8 |,andb = | —5 |. For what
| -1 ] L 2] a
value(s) of /4 is b in the plane spanned by a; and a,?
17 =27 R
Letv, = , V) = 1 [,andy = | —3 |. For what
-2 7 | —5 ]

value(s) of_ h is;' in the pIane ggenerated by v; and v,?

In Exercises 17 and 18, list five vectors in Span {vy, v,}. For each
vector, show the weights on v; and v, used to generate the vector
and list the three entries of the vector. Do not make a sketch.

17.

18.

19.

20.

21.

22.

3 —4
vV = 1 , V) = 0
| 2 1
17] -2
vV = 1 , ¥V = 3
| —2 ] 0
Give a geometric description of Span {v;, v,} for the vectors
8] 12
V| = 2 |and v, = 3
—6 | -9

Give a geometric description of Span {v{, v,} for the vectors
in Exercise 18.

2 2 hil . .
Letu—[_1:| and v—[1:|. Show that [k]ls in
Span {u, v} for all s and k.

Construct a3 x 3 matrix A, with nonzero entries, and a vector
b in R3 such that b is not in the set spanned by the columns
of A.

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23.

a. Another notation for the vector [ _g} is[—4 3]

b. The points in the plane corresponding to [_g] and

|: _; ] lie on a line through the origin.

c. An example of a linear combination of vectors v; and v,
is the vector 1v;.



24,

25.

26.

27.

28.

d. The solution set of the linear system whose augmented
matrix is [a; a, a3 b] is the same as the solution
set of the equation x;a; + x,a; + x3a; = b.

e. Theset Span {u, v} is always visualized as a plane through
the origin.

a. When u and v are nonzero vectors, Span {u, v} contains
only the line through u and the origin, and the line through
v and the origin.

b. Any list of five real numbers is a vector in R>.

c. Asking whether the linear system corresponding to
an augmented matrix [a; a, a; b] has a solution
amounts to asking whether b is in Span {a;, a,, a3 }.

d. The vector v results when a vector u — v is added to the

vector v.
e. The weights ¢;,...,c, in a linear combination
cvy + -+ + ¢,v, cannot all be zero.
1 0 —4 4
Let A = 0 3 =2 | and b= 1 Denote the
-2 6 3 —4

columns of A by aj, a,, a3, and let W = Span {a|, a,, a;3}.
a. Isbin{a;,a,, a;}? How many vectors are in {a,, a5, a3}?
b. Is b in W? How many vectors are in W?

c. Show that a, is in W. [Hint: Row operations are unnec-
essary.]

2 0 6 10
Let A=| —1 8 5|, letb= 3 |, and let W be
1 -2 1 7

the set of all linear combinations of the columns of A.
a. Isbin W?
b. Show that the second column of 4 isin W.

A mining company has two mines. One day’s operation
at mine #1 produces ore that contains 30 metric tons of
copper and 600 kilograms of silver, while one day’s operation
at mine #2 produces ore that contains 40 metric tons of
o

and

copper and 380 kilograms of silver. Let v; = |: 6(3)0

\2) 0 :| . Then v, and v, represent the “output per day”

| 4

- |:380

of mine #1 and mine #2, respectively.

a. What physical interpretation can be given to the vector
5V1?

b. Suppose the company operates mine #1 for x; days and

mine #2 for x, days. Write a vector equation whose

solution gives the number of days each mine should

operate in order to produce 240 tons of copper and 2824

kilograms of silver. Do not solve the equation.

c. [M] Solve the equation in (b).

A steam plant burns two types of coal: anthracite (A) and
bituminous (B). For each ton of A burned, the plant produces
27.6 million Btu of heat, 3100 grams (g) of sulfur dioxide,
and 250 g of particulate matter (solid-particle pollutants). For

29.
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each ton of B burned, the plant produces 30.2 million Btu,
6400 g of sulfur dioxide, and 360 g of particulate matter.

a. How much heat does the steam plant produce when it
burns x; tons of A and x, tons of B?

b. Suppose the output of the steam plant is described by
a vector that lists the amounts of heat, sulfur dioxide,
and particulate matter. Express this output as a linear
combination of two vectors, assuming that the plant burns
x tons of A and x, tons of B.

c. [M] Over a certain time period, the steam plant produced
162 million Btu of heat, 23,610 g of sulfur dioxide, and
1623 g of particulate matter. Determine how many tons
of each type of coal the steam plant must have burned.
Include a vector equation as part of your solution.

Let vy,...,v; be points in R? and suppose that for
Jj =1,...,k an object with mass m is located at point v;.
Physicists call such objects point masses. The total mass of
the system of point masses is

m=my+ -+ myg

The center of gravity (or center of mass) of the system is

1
V= —[mv+-- 4+ mv]
m

Compute the center of gravity of the system consisting of the
following point masses (see the figure):

Point Mass

v =(2,-2,4) 4¢g

v, = (—4,2,3) 2¢g

vy = (4,0,-2) 3¢g

vy = (1,-6,0) 5¢g
A3

\7 \p]
0

X1
33 V4 EY)

30. Let v be the center of mass of a system of point

masses located at v, .. Is v in

Span {vy, ..

., Vi as in Exercise 29.
., Vi +? Explain.
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31. A thin triangular plate of uniform density and thickness has solution? Is the solution unique? Use the figure to explain
vertices at vi = (0, 1), v, = (8,1),and v; = (2, 4), as in the your answers.
figure below, and the mass of the plate is 3 g. X2
X,
2 o3
Y3
4 [
Metal Plate Vi
b
V, oV ¢
| 2
o 0 .
8 V2
a. Find the (x, y)-coordinates of the center of mass of the
plate. This “balance point” of the plate coincides with 33. Use the vectors u = (uy,...,u,), v=(vy,...,v,), and
the center of mass of a system consisting of three 1-gram w = (wy,...,w,) to verify the following algebraic proper-
point masses located at the vertices of the plate. ties of R”.
b. Determine how to distribute an additional mass of 6 g a u+v)+w=u+(v+w)

at the three vertices of the plate to move the balance
point of the plate to (2,2). [Hint: Let w, w,, and ws
denote the masses added at the three vertices, so that 34. Use the vectoru = (uy, ..., u,) to verify the following alge-
w4 w4+ w; = 6.] braic properties of R".

32. Consider the vectors vy, V5, v3, and b in R?, shown in the a ut(-w=(uwt+u=0
figure. Does the equation x;v; + x,v, + X3V3 = b have a b. c¢(du) = (cd)u for all scalars ¢ and d

b. c(u+ v) = cu+ cv for each scalar ¢

SOLUTIONS TO PRACTICE PROBLEMS

1. Take arbitrary vectors u = (uy,...,u,) and v = (vy,...,v,) in R”, and compute
u+v=u +v,...,u, +vy,) Definition of vector addition
= (v1 +Uy,..., 0, + u,,) Commutativity of addition in R
=v+u Definition of vector addition
h=9 2. The vector y belongs to Span {v;, v,, v3} if and only if there exist scalars x;, x3, X3
such that
oV2 1 5 -3 —4
OV \h=5 o V3 X1 —1 +X2 —4 +X3 1 = 3
Span {vy, v, v3} -2 -7 0 h
h=1 This vector equation is equivalent to a system of three linear equations in three
unknowns. If you row reduce the augmented matrix for this system, you find that
R Rl I 1 5 -3 —4 1 5 -3 —4 1 5 -3 —4
€ points ;. 1€ on a line 1 —4 1 3l ~10 1 -2 _1 ~lo 1 -2 1
that intersects the plane when -2 -7 0 h 0 3 -6 h-8 0 0 0 h=5
h=5. The system is consistent if and only if there is no pivot in the fourth column. That

is, h — 5 must be 0. So y is in Span {vy, v,, v3} if and only if 4 = 5.

Remember: The presence of a free variable in a system does not guarantee that the
system is consistent.

1.4 | THE MATRIX EQUATION Ax=Db

A fundamental idea in linear algebra is to view a linear combination of vectors as the
product of a matrix and a vector. The following definition permits us to rephrase some
of the concepts of Section 1.3 in new ways.
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If A is an m x n matrix, with columns ay,...,a,, and if x is in R”, then the
product of A and x, denoted by Ax, is the linear combination of the columns
of A using the corresponding entries in x as weights; that is,

X1
Ax=[a; ay -+ a,]| ! | =xa +xa+-+xa,

Xn

Note that Ax is defined only if the number of columns of A equals the number of entries
in X.

EXAMPLE 1

B HE BB

2 3 4 2 -3 8 —21 —13
b. &8 0 |:7:| =4 8|+7| 0|= 32|+ 0] = 32 [ |
-5 2 -5 2 -20 14 —6

EXAMPLE 2 Forvy, vy, vsin R™, write the linear combination 3v; — 5v, + 7vs as
a matrix times a vector.

SOLUTION Place vy, v, v3 into the columns of a matrix A and place the weights 3, —5,
and 7 into a vector X. That is,

3
3vi=5va+7vs=[vi V2 vi|| =5 | = Ax ]
7

Section 1.3 showed how to write a system of linear equations as a vector equation
involving a linear combination of vectors. For example, the system

X1 +2x, — x3=4
—5x, +3x3 =1

Ll e

As in Example 2, the linear combination on the left side is a matrix times a vector, so

that (2) becomes
X1
1 2 -1 4
o 2=l ®

X3

ey

is equivalent to

Equation (3) has the form Ax = b. Such an equation is called a matrix equation,
to distinguish it from a vector equation such as is shown in (2).

Notice how the matrix in (3) is just the matrix of coefficients of the system (1).
Similar calculations show that any system of linear equations, or any vector equation
such as (2), can be written as an equivalent matrix equation in the form Ax = b. This
simple observation will be used repeatedly throughout the text.

Here is the formal result.
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THEOREM 3

If A is an m x n matrix, with columns ay, ..., a,, and if b is in R™, the matrix
equation
Ax=Db 4)

has the same solution set as the vector equation
Xia; + xpa + -+ x,a, = b (5)

which, in turn, has the same solution set as the system of linear equations whose
augmented matrix is
[a, a -+ a, b] (6)

Theorem 3 provides a powerful tool for gaining insight into problems in linear
algebra, because a system of linear equations may now be viewed in three different
but equivalent ways: as a matrix equation, as a vector equation, or as a system of linear
equations. Whenever you construct a mathematical model of a problem in real life, you
are free to choose whichever viewpoint is most natural. Then you may switch from one
formulation of a problem to another whenever it is convenient. In any case, the matrix
equation (4), the vector equation (5), and the system of equations are all solved in the
same way —by row reducing the augmented matrix (6). Other methods of solution will
be discussed later.

Existence of Solutions

The definition of Ax leads directly to the following useful fact.

The equation Ax = b has a solution if and only if b is a linear combination of the
columns of A.

Section 1.3 considered the existence question, “Is b in Span{ay, ..., a,}?” Equiv-
alently, “Is Ax = b consistent?” A harder existence problem is to determine whether
the equation Ax = b is consistent for all possible b.

1 3 4 by
EXAMPLE 3 LetA=| -4 2 —6 |andb = | b, |. Isthe equation Ax = b
-3 -2 -7 b3

consistent for all possible by, by, b3?

SOLUTION Row reduce the augmented matrix for Ax = b:

1 3 4 b 1 3 4 by
—4 2 —6 by |~ |0 14 10 by + 4b,
32 -7 b | |0 7 5 by+3b
1 3 4 by
~10 14 10 by + 4b,

0 0 0 bs+3b—5(by+4by)

The third entry in column 4 equals b, — %bz + b3. The equation Ax = b is not
consistent for every b because some choices of b can make b; — %bz + b3 nonzero. W
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The reduced matrix in Example 3 provides a description of all b for which the
equation Ax = b is consistent: The entries in b must satisfy

bl—%b2+b3=0

This is the equation of a plane through the origin in R3. The plane is the set of all linear
combinations of the three columns of 4. See Fig. 1.

The equation Ax = b in Example 3 fails to be consistent for all b because the
echelon form of A has a row of zeros. If A had a pivot in all three rows, we would
not care about the calculations in the augmented column because in this case an echelon
form of the augmented matrix could not have a row suchas[0 0 0 1].

In the next theorem, the sentence “The columns of A span R””” means that every b in

R™ is a linear combination of the columns of A. In general, a set of vectors {vy,...,V,}
in R” spans (or generates) R™ if every vector in R” is a linear combination of
Vi,...,V,—thatis, if Span{v,...,v,} = R".

Let A be an m x n matrix. Then the following statements are logically equivalent.
That is, for a particular A, either they are all true statements or they are all false.
For each b in R™, the equation Ax = b has a solution.

Each b in R™ is a linear combination of the columns of A.

The columns of A span R"™.

g o o p

A has a pivot position in every row.

Theorem 4 is one of the most useful theorems in this chapter. Statements (a),
(b), and (c) are equivalent because of the definition of Ax and what it means for a
set of vectors to span R”. The discussion after Example 3 suggests why (a) and (d)
are equivalent; a proof is given at the end of the section. The exercises will provide
examples of how Theorem 4 is used.

Warning: Theorem 4 is about a coefficient matrix, not an augmented matrix. If an
augmented matrix [ A b ] has a pivot position in every row, then the equation Ax = b
may or may not be consistent.

Computation of Ax

The calculations in Example 1 were based on the definition of the product of a matrix A
and a vector x. The following simple example will lead to a more efficient method for
calculating the entries in Ax when working problems by hand.

EXAMPLE 4 Compute Ax,where A= | -1 5 =3 |andx=| x»
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SOLUTION From the definition,

2 3 4 X1 2 3 4
—1 5 =3 X2 | =x1| =1 |+ x 51 +x3] =3
6 -2 8 X3 6 -2 8
2)C1 3)62 T 4)C3
=| —x; | + 5x | + | —3x3 (7)
6X| —2X2 i 8X3

_2)61 +3X2 +4X3_
—Xx1 + 5x, — 3x3
L 6x1 —2x, + 8x3 i

The first entry in the product Ax is a sum of products (sometimes called a dot product),
using the first row of A and the entries in x. That is,

2 3 4 X1
X2

X3

2x1 + 3xy + 4x3

This matrix shows how to compute the first entry in Ax directly, without writing down
all the calculations shown in (7). Similarly, the second entry in Ax can be calculated at
once by multiplying the entries in the second row of A by the corresponding entries in
x and then summing the resulting products:

X1

-1 5 -3

X2
X3

—X1 4+ 5x, — 3x3

Likewise, the third entry in Ax can be calculated from the third row of A4 and the entries

in Xx. |
Row-Vector Rule for Computing Ax
If the product Ax is defined, then the ith entry in Ax is the sum of the products of
corresponding entries from row i of A and from the vector x.

EXAMPLE 5

a 1 2 -1 g 14423417 _ |3

[0 -5 3 . 044+ (-5-3+3-7| |6
2 -3 4 2:44(-3)-7 —137]

b. 8 0 |:7i|= 8-440-7 | = 32
| -5 2 (=5)-4+2-7 —6 |
1 o[ r 1-r+0-54+0-1 r

c. {0 1 O s =10r+1-5s+0-2|=|s [ |
|0 0 1 t O-r+0-s+1-¢ | ¢

By definition, the matrix in Example 5(c) with 1’s on the diagonal and 0’s elsewhere
is called an identity matrix and is denoted by /. The calculation in part (c) shows that
Ix = x for every x in R?. There is an analogous n x n identity matrix, sometimes
written as [,,. As in part (c), I,x = x for every x in R”.



THEOREM 5

1.4 The Matrix Equation Ax =b 39

Properties of the Matrix—Vector Product Ax

The facts in the next theorem are important and will be used throughout the text. The
proof relies on the definition of Ax and the algebraic properties of R”.

If A is an m X n matrix, u and v are vectors in R”, and ¢ is a scalar, then:

a. A(u+v) = Au + Av;
b. A(cu) = c(Au).

PROOF For simplicity, taken =3, A =[a; a, az],andu,vin R3. (The proof of
the general case is similar.) Fori = 1,2, 3, let u; and v; be the ith entries in u and v,
respectively. To prove statement (a), compute A(u + v) as a linear combination of the
columns of A using the entries in u + v as weights.

ui + U1
A(u+v)=[a; a a3]| ur+ v
us + v3
i i ~L Entriesinu + v
= (u1 +vi)ay + (u2 + v)ay + (u3 + v3)az
1 1 1 Columns of 4
= (u1a; + uray + uzaz) + (via; + vra; + v3a3)

= Au+ Av
To prove statement (b), compute A(cu) as a linear combination of the columns of A
using the entries in cu as weights.
CUq

[ar1 ay a3]| cusr | = (cup)ay + (cuz)az + (cuz)az
Cus

A(cu)

= c(uja) + c(u2a2) + c(uzas)
= c(u1a; + usa; + uzaz)
= c(Au) ]

— NUMERICAL NOTE

To optimize a computer algorithm to compute Ax, the sequence of calculations
should involve data stored in contiguous memory locations. The most widely
used professional algorithms for matrix computations are written in Fortran, a
language that stores a matrix as a set of columns. Such algorithms compute Ax
as a linear combination of the columns of A. In contrast, if a program is written in
the popular language C, which stores matrices by rows, Ax should be computed
via the alternative rule that uses the rows of A.

PROOF OF THEOREM 4 As was pointed out after Theorem 4, statements (a), (b), and
(c) are logically equivalent. So, it suffices to show (for an arbitrary matrix A) that (a)
and (d) are either both true or both false. That will tie all four statements together.

Let U be an echelon form of 4. Given b in R”, we can row reduce the augmented
matrix [ A b] to an augmented matrix [U d] for some d in R™:

[A b]~-~[U d]
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If statement (d) is true, then each row of U contains a pivot position and there can be
no pivot in the augmented column. So Ax = b has a solution for any b, and (a) is true.
If (d) is false, the last row of U is all zeros. Let d be any vector with a 1 in its last entry.
Then [U d] represents an inconsistent system. Since row operations are reversible,
[U d] can be transformed into the form [ A b]. The new system Ax = b is also
inconsistent, and (a) is false. |

PRACTICE PROBLEMS

1 5 -2 0 _g -7
I.letA=(-3 1 9 5|, p= ol and b = 9 |. It can be shown
4 -8 -1 7 4 0

that p is a solution of Ax = b. Use this fact to exhibit b as a specific linear
combination of the columns of A.

2. Let A = |:§ ?j|, u= [_T ], and v = [_g] Verify Theorem 5(a) in this case

by computing A(u + v) and Au + Av.

1.4 EXERCISES

Compute the products in Exercises 1-4 using (a) the definition, as 9. 5x1+ x» —3x3=8 10. 4x; — x, =8
in Example 1, and (b) the row—vector rule for computing Ax. If a 2%, 4 dx; =0 5% 4 3x, =2
product is undefined, explain why.
3X1 — Xy = 1
-4 2 3 1 . . . . .
1 1 6 9 2. |3 |: 5 ] Given A and b in Exercises 11 and 12, write the augmented matrix
0 1 7 1 -1 for the linear system that corresponds to the matrix equation
Ax = b. Then solve the system and write the solution as a vector.
a0 [_z] . [1 3 _4} ; 13 4 2
. 6 3 32 1 1 11. A= 1 5 2|,b= 4
-3 -7 6 12
In Exercises 5-8, use the definition of AX to write the matrix 1 ) | |
equation as a vector equation, or vice versa. 2. A=| -3 -4 2|b=
2 5 2 3 -3
5 1 2 -3 1 ] -1 _ [—4] 0 3 s
-2 =3 1 -1 1 1 . )
- -1 13. Letu= |4 [and A= | =2 6 |. Is uin the plane in
4 1 1
2 -3 =21 R* spanned by the columns of A? (See the figure.) Why or
6 32 [ -3 :| _ 1 why not?
) 8 -5 5 —49 *u?
|2 1 11
4 =5 7 6
7. X -1 ‘o 3 - _8 _ _8 . ; g}ane 1spannedflj:‘y
. 7 _5 k 0 0 /o.u_ e columns o
—4 ! 2 =7 Where is u?
8. Zl[_i]+22|: é]+23|: §]+Z4|:(2)i|=|:1§i| 4 2 5 —1
14. Letu=| —1 [andA = | 0 1 —1 |.Isuinthe subset
In Exercises 9 and 10, write the system first as a vector equation 4 1 2 0

and then as a matrix equation. of R? spanned by the columns of 4? Why or why not?



15.

16.

LetA = 3 -l andb = by . Show that the equation
-9 3 by

Ax = b does not have a solution for all possible b, and
describe the set of all b for which AXx = b does have a
solution.

Repeat the requests from Exercise 15 with

1 -2 -1 by
A=| =2 2 0|, and b= | b,
4 -1 3 b;

Exercises 17-20 refer to the matrices A and B below. Make
appropriate calculations that justify your answers and mention an
appropriate theorem.

A=

17.

18.

19.

20.

21.

22,

1 3 0 3 1 4 1 2
-1 -1 -1 1 B — 0 1 3 4
0o —4 2 -8 o 2 6 7
2 0 3 -1 2 9 5 -7

How many rows of A contain a pivot position? Does the
equation Ax = b have a solution for each b in R*?

Can every vector in R* be written as a linear combination of
the columns of the matrix B above? Do the columns of B
span R3?

Can each vector in R* be written as a linear combination of
the columns of the matrix A above? Do the columns of A
span R*?

Do the columns of B span R*? Does the equation Bx =y
have a solution for each y in R*?

1 0 1
0 —1 0
Let v, = 1l VvV, = o |’ V3 = 0 Does
L 0] L 1] L —1 ]
{v1, V5, v3} span R*? Why or why not?
M 0] M 07 M 47
Let v, = Of, vo=1| =3 |, v3=1| =2 Does
-3 |9 | —6 |

{V1, V2, v3} span R*? Why or why not?

In Exercises 23 and 24, mark each statement True or False. Justify

each

23.

answer.

a. The equation Ax = b is referred to as a vector equation.

b. A vector b is a linear combination of the columns of a
matrix A if and only if the equation Ax = b has at least
one solution.

c. The equation Ax = b is consistent if the augmented ma-
trix [ A b ] has a pivot position in every row.

d. The first entry in the product Ax is a sum of products.

e. If the columns of an m x n matrix A span R”, then the
equation Ax = b is consistent for each b in R”".

f. If A is an m x n matrix and if the equation Ax = b is
inconsistent for some b in R™, then A cannot have a pivot
position in every row.

24.

25.

26.

27.

28.

29.

30.

31.
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a. Every matrix equation Ax = b corresponds to a vector
equation with the same solution set.

b. If the equation Ax = b is consistent, then b is in the set
spanned by the columns of 4.

c. Any linear combination of vectors can always be written
in the form Ax for a suitable matrix 4 and vector x.

d. If the coefficient matrix A has a pivot position in every
row, then the equation Ax = b is inconsistent.

e. The solution set of a linear system whose augmented
matrix is [a; a, a; b]isthe same as the solution set
of Ax = b, if A= [al a 33].

f. If A is an m x n matrix whose columns do not span R",
then the equation Ax = b is consistent for every b in R”.

4 -3 1 -3 -7

Note that 5 =2 5 -1 |({=1-3

-6 2 -3 2 10

fact (and no row operations) to find scalars ¢y, ¢, ¢3 such
-7 4 -3 1
-3 | =cq 514+ =2 |+c 5
10 —6 2 -3

Use this

that

7 3 5
letu= (2|, v=]|1], and w=| 1

5 3 1
shown that 2u — 3v —w = 0. Use this fact (and no row
operations) to find x; and x, that satisfy the equation

7 3 . 5

2 1 [xl ] =1

5 3L 1
Rewrite the (numerical) matrix equation below in symbolic
form as a vector equation, using symbols vy, v, ... for the

vectors and ¢y, ¢, ... for scalars. Define what each symbol
represents, using the data given in the matrix equation.

-3
-3 5 -4 9 7
5 8 1 =2 —4

1
11
)=o)
1 —11
2
Let q;, q,, q3, and v represent vectors in R?, and let x1, x5,
and x; denote scalars. Write the following vector equation as
a matrix equation. Identify any symbols you choose to use.

It can be

X1q; + X2q, + X3q3 =V

Construct a 3 x 3 matrix, not in echelon form, whose
columns span R*. Show that the matrix you construct has
the desired property.

Construct a 3 x 3 matrix, not in echelon form, whose
columns do not span R3. Show that the matrix you construct
has the desired property.

Let A be a 3 x 2 matrix. Explain why the equation Ax = b
cannot be consistent for all b in R®. Generalize your ar-
gument to the case of an arbitrary A with more rows than
columns.
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32.

33.

34.

35.

36.
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Could a set of three vectors in R* span all of R*? Explain.
What about n vectors in R” when 7 is less than m?

Suppose A is a 4 x 3 matrix and b is a vector in R* with
the property that Ax = b has a unique solution. What can
you say about the reduced echelon form of A? Justify your
answer.

Let A be a 3 x 4 matrix, let v; and v, be vectors in R3, and
let w = v; + v,. Suppose v; = Au; and v, = Au, for some
vectors u; and u, in R*. What fact allows you to conclude
that the system Ax = w is consistent? (Note: u; and u,
denote vectors, not scalar entries in vectors.)

Let A be a 5 x 3 matrix, let y be a vector in R3, and let z be
a vector in R>. Suppose Ay = z. What fact allows you to
conclude that the system Ax = 5z is consistent?

Suppose A is a 4 x 4 matrix and b is a vector in R* with the
property that Ax = b has a unique solution. Explain why the
columns of A must span R*.

[M] In Exercises 37-40, determine if the columns of the matrix
span R*.

El Mastering Linear Algebra Concepts: Span 1-18

37.

39.

40.

41.

42,

7 2 -5 8 4 5 -1 8
=5 34 9| o3 T 4 2
6 10 =2 7 |5 -6 -1 4
-7 9 2 15 9 1 10 7
0o -7 1 4 6

-8 4 —6 —-10 -3

-7 11 =5 -1 -8
| 3 -1 10 12 12
5 11 —6 -7 12

-7 -3 -4 6 -9

15 6 -9 -3
|3 4 -7 2 7

[M] Find a column of the matrix in Exercise 39 that can be
deleted and yet have the remaining matrix columns still span
R4,

[M] Find a column of the matrix in Exercise 40 that can be
deleted and yet have the remaining matrix columns still span
R*. Can you delete more than one column?

SOLUTIONS TO PRACTICE PROBLEMS

1. The matrix equation

1
-3
4

is equivalent to the vector equation

1
3] =3

-2

5 -2 0 _; -7
L9 s o= 0
-8 -1 7| _, 0
5 -2 0 -7
Ll+0] 9|—-4|-5]|=| 9
-8 -1 7 0

which expresses b as a linear combination of the columns of A.

2. u+tv= _?}—i—
2 5
A(u—l—v)—_3 1]

5 sTr

Au+ Av = 3 1:|

[ -3
5

B

4

—1

-1

L
B
N

22
7

7]
)
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1.5 | SOLUTION SETS OF LINEAR SYSTEMS

\b\\)@é%

FIGURE 1

X

Solution sets of linear systems are important objects of study in linear algebra. They
will appear later in several different contexts. This section uses vector notation to give
explicit and geometric descriptions of such solution sets.

Homogeneous Linear Systems

A system of linear equations is said to be homogeneous if it can be written in the
form Ax = 0, where A is an m x n matrix and 0 is the zero vector in R”. Such a
system Ax = 0 always has at least one solution, namely, x = 0 (the zero vector in R").
This zero solution is usually called the trivial solution. For a given equation Ax = 0,
the important question is whether there exists a nontrivial solution, that is, a nonzero
vector x that satisfies Ax = 0. The Existence and Uniqueness Theorem in Section 1.2
(Theorem 2) leads immediately to the following fact.

The homogeneous equation Ax = 0 has a nontrivial solution if and only if the
equation has at least one free variable.

EXAMPLE 1 Determine if the following homogeneous system has a nontrivial
solution. Then describe the solution set.
3x1 +5x, —4x3=0
—3x; —2x, +4x3=0
6x;1 + x, —8x3 =0

SOLUTION Let A be the matrix of coefficients of the system and row reduce the
augmented matrix [ A 0] to echelon form:

35 -4 0 35 -4 0 35 -4 0
-3 -2 4 O0|~(0 3 O O|~(0 3 0 O
6 1 -8 0 0-9 0 0 0 0 0 0

Since x3 is a free variable, Ax = 0 has nontrivial solutions (one for each choice of x3).
To describe the solution set, continue the row reduction of [ A 0] to reduced echelon
form:

10 -4 0 xp —30=0
0 1 0 0 X =0
0 0 0 0 0 -0

Solve for the basic variables x| and x, and obtain x; = %

vector, the general solution of Ax = 0 has the form

X3, X = 0, with x5 free. As a

4 4 4
X1 3X3 3 3
X=1|x | = 0 =x3| 0 | =x3v, wherev=] 0
X3 X3 1 1

Here x3 is factored out of the expression for the general solution vector. This shows that
every solution of Ax = 0 in this case is a scalar multiple of v. The trivial solution is
obtained by choosing x3 = 0. Geometrically, the solution set is a line through 0 in R3.
See Fig. 1. [ |
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FIGURE 2

Notice that a nontrivial solution x can have some zero entries so long as not all of
its entries are zero.

EXAMPLE 2 A single linear equation can be treated as a very simple system of
equations. Describe all solutions of the homogeneous “system”

10x1 — 3)C2 — 2)C3 =0 (1)

SOLUTION There is no need for matrix notation. Solve for the basic variable x; in
terms of the free variables. The general solution is x; = .3x; + .2x3, with x, and x3
free. As a vector, the general solution is

X1 .3X2 + .2X3 [ .3.X2 .2X3
X=| x| = X2 = Xy | + 0
X3 X3 | 0 X3
3 27
=x| 1 |[4+x3| O (with x,, x5 free) 2)
0 I
t t
u A\

This calculation shows that every solution of (1) is a linear combination of the vectors
u and v, shown in (2). That is, the solution set is Span {u, v}. Since neither u nor v is a
scalar multiple of the other, the solution set is a plane through the origin. See Fig.2. H

Examples 1 and 2, along with the exercises, illustrate the fact that the solu-
tion set of a homogeneous equation Ax = 0 can always be expressed explicitly as
Span{vy,...,v,} for suitable vectors vy, ..., v,. If the only solution is the zero vector,
then the solution set is Span{0}. If the equation Ax = 0 has only one free variable,
the solution set is a line through the origin, as in Fig. 1. A plane through the origin,
as in Fig. 2, provides a good mental image for the solution set of Ax = 0 when there
are two or more free variables. Note, however, that a similar figure can be used to
visualize Span {u, v} even when u and v do not arise as solutions of Ax = 0. See Fig. 11
in Section 1.3.

Parametric Vector Form

The original equation (1) for the plane in Example 2 is an implicit description of the
plane. Solving this equation amounts to finding an explicit description of the plane as
the set spanned by u and v. Equation (2) is called a parametric vector equation of the
plane. Sometimes such an equation is written as

Xx=su+1tv (s,7inR)

to emphasize that the parameters vary over all real numbers. In Example 1, the equation
X = x3V (with x3 free), or x = ¢v (with ¢ in R), is a parametric vector equation of a line.
Whenever a solution set is described explicitly with vectors as in Examples 1 and 2, we
say that the solution is in parametric vector form.

Solutions of Nonhomogeneous Systems

When a nonhomogeneous linear system has many solutions, the general solution can be
written in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.
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FIGURE 3
Adding p to v translates v to v + p.

L+p

FIGURE 4

Translated line.
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EXAMPLE 3 Describe all solutions of Ax = b, where

3 5 —4 7
A=| -3 -2 4 and b=| —1
6 1 -8 —4

SOLUTION Here 4 is the matrix of coefficients from Example 1. Row operations on
[A Db]produce

3.5 -4 7 1o -5 -1 T
-3 2 4 -1 |~]10 1 0 2/, X = 2
6 1 -8 —4 0O 0 0 O 0 = 0
Thus x; = —1 + §x3, X, =2, and x3 is free. As a vector, the general solution of
Ax = b has the form
X1 -1+ %X_v, -1 %Xj, -1 %
X=|x | = 2 = 214+1] 0 = 2 [ +x31 0
X3 X3 0 X3 0 1
{ t
|y v
The equation x = p + X3V, or, writing 7 as a general parameter,
x=p+1tv (inR) 3)

describes the solution set of Ax = b in parametric vector form. Recall from Example 1
that the solution set of Ax = 0 has the parametric vector equation

x=1tv (tinR) (Y]

[with the same v that appears in (3)]. Thus the solutions of Ax = b are obtained by
adding the vector p to the solutions of Ax = 0. The vector p itself is just one particular
solution of Ax = b [corresponding to # = 0 in (3)]. [ |

To describe the solution set of Ax = b geometrically, we can think of vector
addition as a translation. Given v and p in R? or R3, the effect of adding p to v is
to move v in a direction parallel to the line through p and 0. We say that v is translated
by p to v + p. See Fig. 3. If each point on a line L in R? or R? is translated by a vector
p. the result is a line parallel to L. See Fig. 4.

Suppose L is the line through 0 and v, described by equation (4). Adding p to each
point on L produces the translated line described by equation (3). Note that p is on the
line in equation (3). We call (3) the equation of the line through p parallel to v. Thus
the solution set of AX = b is a line through p parallel to the solution set of Ax = 0.
Figure 5 illustrates this case.

Ax=b

A PV
/ Ax=0
P %

tv

FIGURE 5 Parallel solution sets of Ax = b and
Ax = 0.

The relation between the solution sets of Ax = b and Ax = 0 shown in Fig. 5
generalizes to any consistent equation Ax = b, although the solution set will be larger
than a line when there are several free variables. The following theorem gives the precise
statement. See Exercise 25 for a proof.
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THEOREM 6 Suppose the equation Ax = b is consistent for some given b, and let p be a
solution. Then the solution set of Ax = b is the set of all vectors of the form
W = p + v;,, where vy, is any solution of the homogeneous equation Ax = 0.

Theorem 6 says that if Ax = b has a solution, then the solution set is obtained by
translating the solution set of Ax = 0, using any particular solution p of Ax = b for
the translation. Figure 6 illustrates the case in which there are two free variables. Even
when n > 3, our mental image of the solution set of a consistent system Ax = b (with
b # 0) is either a single nonzero point or a line or plane not passing through the origin.

Ax=Db

—Ax=0

FIGURE 6 Parallel solution sets of
Ax = b and Ax = 0.

Warning: Theorem 6 and Fig. 6 apply only to an equation Ax = b that has at least
one nonzero solution p. When Ax = b has no solution, the solution set is empty.

The following algorithm outlines the calculations shown in Examples 1, 2, and 3.

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM) IN PARAMETRIC
VECTOR FORM

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free
variables, if any.

4. Decompose x into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

PRACTICE PROBLEMS

1. Each of the following equations determines a plane in R3. Do the two planes
intersect? If so, describe their intersection.

X1+4XQ—5X3=0
2x1 — X2 +8x3=9

2. Write the general solution of 10x; — 3x, — 2x3 = 7 in parametric vector form, and
relate the solution set to the one found in Example 2.
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In Exercises 1-4, determine if the system has a nontrivial solution.
Try to use as few row operations as possible.
1. 2X1 — 5X2 + 8X3 =0 2.
—2x1 —=Tx, + x3=0
4)C1 + 2X2 + 7X3 =0

X;—2x; 4+ 3x3=0
—2)C1 — 3X2 — 4X3 =0
2)(71 —4X2 + 9X3 =0

3. —3)61 + 4X2 — 8X3 =0 4.
—2X1 4+ 5x, + 4x3 =0

5)61 — 3X2 + 2X3 =0
—3X1 — 4X2 + 2X3 =0
In Exercises 5 and 6, follow the method of Examples 1 and 2

to write the solution set of the given homogeneous system in
parametric vector form.

5. 2X1 + 2X2 + 4X3 =0 6.
—4.X1 — 4X2 — 8X3 =0

—3)(2—3)63:0

X1 +2XZ—3X3:0
2.Xf1 + X — 3X3 =0
—1lx; 4+ x, =0

In Exercises 7-12, describe all solutions of Ax = 0 in parametric
vector form, where A is row equivalent to the given matrix.

(13 =3 7 1 -3 -8 5
1o 1 -4 5] 8. [0 ) —4]
3 -6 6 -1 —4 0 —4
12 4 —2] 10. [ 2 -8 0 8]
1 -4 2 0 3 -5]
0 0 1 0 0 —I
Wlo 0o 0 0 1 -4
L0 0 0 0 0 0]
(1 -2 3 6 5 0]
0 0 0 1 4 —6
2200 0 0 0o o 1
L0 0 0 0 0 0]

13. Suppose the solution set of a certain system of linear equa-
tions can be described as x; = 5 + 4x3, x, = —2 — 7x3, with
x5 free. Use vectors to describe this set as a line in R>.

14. Suppose the solution set of a certain system of linear
equations can be described as x; = 5x4, Xo = 3 —2Xxy,
x3 = 2 + 5xy4, with x4 free. Use vectors to describe this set
as a “line” in R*.

15. Describe and compare the solution sets of x; + 5x; —
3)(3 = 0and X1 + 5x, — 3X3 = -2.

16. Describe and compare the solution sets of x; —2x; +
3x3 = 0and x; —2x, + 3x3 = 4.

17. Follow the method of Example 3 to describe the solutions of
the following system in parametric vector form. Also, give
a geometric description of the solution set and compare it to
that in Exercise 5.

2X1 + 2X2 + 4X3 = 8
—4X1 — 4X2 — 8X3 =—16
- 3X2 — 3X3 = 12

18. As in Exercise 17, describe the solutions of the following
system in parametric vector form, and provide a geometric
comparison with the solution set in Exercise 6.

X1 + 2)62 — 3X3 = 5
2X1 + x; — 3)63 =13
—X1 + X3 = -8

In Exercises 19 and 20, find the parametric equation of the line
through a parallel to b.

T3] w2l

In Exercises 21 and 22, find a parametric equation of the line M
through p and q. [Hint: M is parallel to the vector q — p. See the

figure below.]
-3 0

o[- ]

X2

19. a=|:

X1

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. A homogeneous equation is always consistent.

b. The equation Ax = 0 gives an explicit description of its
solution set.

c. The homogeneous equation Ax = 0 has the trivial so-
lution if and only if the equation has at least one free
variable.

d. The equation X = p + ¢v describes a line through v par-
allel to p.

e. The solution set of Ax = b is the set of all vectors of
the form w = p + v,, where v, is any solution of the
equation Ax = 0.

24.

&

A homogeneous system of equations can be inconsistent.
b. Ifxis anontrivial solution of Ax = 0, then every entry in
X is nonzero.

c. The effect of adding p to a vector is to move the vector in
a direction parallel to p.

d. The equation Ax = b is homogeneous if the zero vector
is a solution.
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e. If Ax = b is consistent, then the solution set of Ax = b
is obtained by translating the solution set of Ax = 0.

25. Prove Theorem 6:

a. Suppose p is a solution of Ax = b, so that Ap = b. Let
v, be any solution of the homogeneous equation Ax = 0,
and let w = p + v;,. Show that w is a solution of Ax = b.

b. Let w be any solution of Ax = b, and define v, = w — p.
Show that v, is a solution of Ax = 0. This shows that
every solution of Ax = b has the form w = p + v,,, with
p a particular solution of Ax = b and v, a solution of
Ax = 0.

26. Suppose A is the 3 x 3 zero matrix (with all zero entries).

Describe the solution set of the equation Ax = 0.

27. Suppose Ax = b has a solution. Explain why the solution is
unique precisely when Ax = 0 has only the trivial solution.

In Exercises 28-31, (a) does the equation Ax = 0 have a nontriv-
ial solution and (b) does the equation Ax = b have at least one
solution for every possible b?

28. Ais a3 x 3 matrix with three pivot positions.
29. Ais a4 x 4 matrix with three pivot positions.
30. Aisa?2 x5 matrix with two pivot positions.
31. Ais a3 x 2 matrix with two pivot positions.

32. If b # 0, can the solution set of Ax = b be a plane through
the origin? Explain.

33. Constructa 3 x 3 nonzero matrix A such that the vector | 1
1
is a solution of Ax = 0.

34.

35.

36.

37.

38.

39.

Construct a 3 x 3 nonzero matrix A such that the vector
2
—1 | is a solution of Ax = 0.
1

[—1 -3
Given A = 7 21 |, find one nontrivial solution of
-2 —6

Ax = 0 by inspection. [;-Iint: Think of the equation Ax = 0
written as a vector equation. ]

3 —27]
Given A= | —6 4 |, find one nontrivial solution of
12 -8

Ax = 0 by ingpection.

Construct a 2 x 2 matrix A such that the solution set of the
equation Ax = 0 is the line in R? through (4,1) and the
origin. Then, find a vector b in R? such that the solution
set of Ax = b is not a line in R? parallel to the solution set
of Ax = 0. Why does this not contradict Theorem 6?

Let A be an m x n matrix and let w be a vector in R” that
satisfies the equation Ax = 0. Show that for any scalar c,
the vector cw also satisfies Ax = 0. [That is, show that
A(cw) =0.]

Let A be an m x n matrix, and let v and w be vectors in
R" with the property that Av =0 and Aw = 0. Explain
why A(v + w) must be the zero vector. Then explain why
A(cv + dw) = 0 for each pair of scalars ¢ and d.

. Suppose 4 is a 3 x 3 matrix and b is a vector in R? such that

the equation Ax = b does not have a solution. Does there
exist a vector y in R? such that the equation Ax =y has a
unique solution? Discuss.

SOLUTIONS TO PRACTICE PROBLEMS

1. Row reduce the augmented matrix:

1 4 -5 0 1 4 -5 0 1 0 3 4
2 -1 8 9 0o -9 18 9 0o 1 -2 -1
X1 +3x3= 4
Xy — 2X3 =-1
Thus x; = 4 — 3x3, x, = —1 + 2x3, with x3 free. The general solution in paramet-
ric vector form is
X1 4 — 3X3 4 -3
X2 = -1+ 2)(?3 = -1 + X3 2
X3 X3 0 1

—
—

The intersection of the two planes is the line through p in the direction of v.
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2. The augmented matrix [ 10 =3 -2 7] is row equivalent to [ 1 -3-2 7 ],
and the general solution is x; = .7 4+ .3x, + .2x3, with x, and x3 free. That is,

X1 T4+ 3x, + 2x3 i 3 2
X=|Xx | = X7 =1 0| +x] 1]|4+x3] 0
X3 X3 0 0 1

= p + xu + X3V

The solution set of the nonhomogeneous equation Ax = b is the translated plane
p + Span {u, v}, which passes through p and is parallel to the solution set of the
homogeneous equation in Example 2.

1.6 APPLICATIONS OF LINEAR SYSTEMS

You might expect that a real-life problem involving linear algebra would have only one
solution, or perhaps no solution. The purpose of this section is to show how linear
systems with many solutions can arise naturally. The applications here come from
economics, chemistry, and network flow.

A Homogeneous System in Economics

The system of 500 equations in 500 variables, mentioned in this chapter’s introduction,
is now known as a Leontief “input—output” (or “production”) model.! Section 2.6 will
examine this model in more detail, when more theory and better notation are available.
For now, we look at a simpler “exchange model,” also due to Leontief.

Suppose a nation’s economy is divided into many sectors, such as various manu-
facturing, communication, entertainment, and service industries. Suppose that for each
sector we know its total output for one year and we know exactly how this output is
divided or “exchanged” among the other sectors of the economy. Let the total dollar
value of a sector’s output be called the price of that output. Leontief proved the
following result.

There exist equilibrium prices that can be assigned to the total outputs of the
various sectors in such a way that the income of each sector exactly balances its
expenses.

The following example shows how to find the equilibrium prices.

EXAMPLE 1 Suppose an economy consists of the Coal, Electric (power), and Steel
sectors, and the output of each sector is distributed among the various sectors as shown
in Table 1 on page 50, where the entries in a column represent the fractional parts of a
sector’s total output.

The second column of Table 1, for instance, says that the total output of the Electric
sector is divided as follows: 40% to Coal, 50% to Steel, and the remaining 10% to
Electric. (Electric treats this 10% as an expense it incurs in order to operate its business.)
Since all output must be taken into account, the decimal fractions in each column must
sum to 1.

ISee Wassily W. Leontief, “Input—Output Economics,” Scientific American, October 1951, pp. 15-21.
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Denote the prices (i.e., dollar values) of the total annual outputs of the Coal,
Electric, and Steel sectors by pc, pg, and ps, respectively. If possible, find equilibrium
prices that make each sector’s income match its expenditures.

Electric

TABLE 1 A Simple Economy

o Distribution of Output from:
Coal Electric Steel Purchased by:
.0 4 .6 Coal
.6 .1 2 Electric
6 4 5 2 Steel

SOLUTION A sector looks down a column to see where its output goes, and it looks
across a row to see what it needs as inputs. For instance, the first row of Table 1
says that Coal receives (and pays for) 40% of the Electric output and 60% of the Steel
2 output. Since the respective values of the total outputs are pg and pg, Coal must spend
.4 pg dollars for its share of Electric’s output and .6pg for its share of Steel’s output.
Thus Coal’s total expenses are .4pg + .6ps. To make Coal’s income, pc, equal to its
expenses, we want

pc = .4pe + .6ps (D

The second row of the exchange table shows that the Electric sector spends .6 pc
for coal, .1pg for electricity, and .2 pg for steel. Hence the income/expense requirement
for Electric is

PE = .6pc + .1pg + 2ps (2)
Finally, the third row of the exchange table leads to the final requirement:
ps = .4pc + .5pe + .2ps 3)

To solve the system of equations (1), (2), and (3), move all the unknowns to the left
sides of the equations and combine like terms. [For instance, on the left side of (2),
write pg — .1pg as .9pg.]

pc — 4pe — .6ps =0
—.6pc + 9peg — 2ps =0
—.4pc — Spg + 8ps =0

Row reduction is next. For simplicity here, decimals are rounded to two places.

1 -4-6 0 1 -4 -6 0 I -4 -6 0
-6 9-2 0|~]|0 .66 —-.56 ~10 66 —56
-4 -5 8 0 | 0 —66 .56 0

0 0
0 0
[1 -4 -6 0 1 0 -9
~10 1-85 0 0 1—85
0 0 0 0 0
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The general solution is pc = .94 ps, pg = .85ps, and ps is free. The equilibrium price
vector for the economy has the form

Pc .94ps .94
pP= PE = .SSpS = Ps .85
Ps Ps 1

Any (nonnegative) choice for pg results in a choice of equilibrium prices. For instance,
if we take pg to be 100 (or $100 million), then pc = 94 and pg = 85. The incomes and
expenditures of each sector will be equal if the output of Coal is priced at $94 million,
that of Electric at $85 million, and that of Steel at $100 million. [ |

Balancing Chemical Equations

Chemical equations describe the quantities of substances consumed and produced
by chemical reactions. For instance, when propane gas burns, the propane (C3Hg)
combines with oxygen (O,) to form carbon dioxide (CO,) and water (H,O), according
to an equation of the form

(x1)C3Hg + (x2)02 — (x3)CO; + (x4)H20 )

To “balance” this equation, a chemist must find whole numbers X1, ..., x4 such that the
total numbers of carbon (C), hydrogen (H), and oxygen (O) atoms on the left match the
corresponding numbers of atoms on the right (because atoms are neither destroyed nor
created in the reaction).

A systematic method for balancing chemical equations is to set up a vector equation
that describes the numbers of atoms of each type present in a reaction. Since equation
(4) involves three types of atoms (carbon, hydrogen, and oxygen), construct a vector in
R for each reactant and product in (4) that lists the numbers of “atoms per molecule,”
as follows:

3 0 1 0 | <— Carbon
C3Hg: [ 8 |, O: | O], COy: | O |, HyO: | 2 | < Hydrogen
0 2 2 ] 1 | <— Oxygen
To balance equation (4), the coefficients xp, ..., x4 must satisfy
3 0 1 0
X1 8 + X2 0 = X3 0|+ X4 2
0 2 | 2 1

To solve, move all the terms to the left (changing the signs in the third and fourth
ctors):

3 0 —1 0 0
X1 8 + X7 0 —+ X3 0 =+ X4 -2 = 0
0 2 -2 —1 0

Row reduction of the augmented matrix for this equation leads to the general solution

X = %x4, Xy = §x4, X3 = %x4, with x4 free

Since the coefficients in a chemical equation must be integers, take x4 = 4, in which
case x; = 1, x, = 5, and x3 = 3. The balanced equation is

C3;Hg + 50, — 3CO, + 4H,0

The equation would also be balanced if, for example, each coefficient were doubled. For
most purposes, however, chemists prefer to use a balanced equation whose coefficients
are the smallest possible whole numbers.
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30 p—¢

—

FIGURE 1

—)xz

A junction, or node.

Network Flow

Systems of linear equations arise naturally when scientists, engineers, or economists
study the flow of some quantity through a network. For instance, urban planners and
traffic engineers monitor the pattern of traffic flow in a grid of city streets. Electrical
engineers calculate current flow through electrical circuits. And economists analyze
the distribution of products from manufacturers to consumers through a network of
wholesalers and retailers. For many networks, the systems of equations involve
hundreds or even thousands of variables and equations.

A network consists of a set of points called junctions, or nodes, with lines or arcs
called branches connecting some or all of the junctions. The direction of flow in each
branch is indicated, and the flow amount (or rate) is either shown or is denoted by a
variable.

The basic assumption of network flow is that the total flow into the network equals
the total flow out of the network and that the total flow into a junction equals the total
flow out of the junction. For example, Fig. 1 shows 30 units flowing into a junction
through one branch, with x; and x, denoting the flows out of the junction through other
branches. Since the flow is “conserved” at each junction, we must have x; + x, = 30.
In a similar fashion, the flow at each junction is described by a linear equation. The
problem of network analysis is to determine the flow in each branch when partial
information (such as the flow into and out of the network) is known.

EXAMPLE 2 The network in Fig. 2 shows the traffic flow (in vehicles per hour)
over several one-way streets in downtown Baltimore during a typical early afternoon.
Determine the general flow pattern for the network.

X3 100
Calvert St. | South St.Y T
N
Lombard St. |B
300 <« < ¢ < 400
X4
X2 A X5y
Pratt St. |A D
300 > = > > 600
A
500

FIGURE 2 Baltimore streets.

SOLUTION Write equations that describe the flow, and then find the general solution
of the system. Label the street intersections (junctions) and the unknown flows in the
branches, as shown in Fig. 2. At each intersection, set the flow in equal to the flow out.

Intersection Flow in Flow out
A 300 +500 = x;+ x;
B X+ x4 = 300+ x;
C 100 4400 = x4+ x5
D X+ x5 = 600
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Also, the total flow into the network (500 + 300 + 100 + 400) equals the total flow
out of the network (300 4 x3 + 600), which simplifies to x3 = 400. Combine this
equation with a rearrangement of the first four equations to obtain the following system
of equations:

X1+ X = 800
Xo — X3 + X4 = 300

X4 + x5 = 500

X1 + x5 = 600
X3 = 400

Row reduction of the associated augmented matrix leads to

X1 + x5 = 600
X2 — X5 = 200

X3 = 400

X4 + x5 = 500

The general flow pattern for the network is described by

x; = 600 — x5
X, = 200 + x5
x3 = 400
X4 = 500 — x5
X5 1s free

A negative flow in a network branch corresponds to flow in the direction opposite
to that shown on the model. Since the streets in this problem are one-way, none of the
variables here can be negative. This fact leads to certain limitations on the possible
values of the variables. For instance, x5 < 500 because x4 cannot be negative. Other
constraints on the variables are considered in Practice Problem 2. [ |

PRACTICE PROBLEMS

1. Suppose an economy has three sectors: Agriculture, Mining, and Manufacturing.
Agriculture sells 5% of its output to Mining and 30% to Manufacturing, and retains
the rest. Mining sells 20% of its output to Agriculture and 70% to Manufacturing,
and retains the rest. Manufacturing sells 20% of its output to Agriculture and 30% to
Mining, and retains the rest. Determine the exchange table for this economy, where
the columns describe how the output of each sector is exchanged among the three
sectors.

2. Consider the network flow studied in Example 2. Determine the possible range of
values of x; and x,. [Hint: The example showed that x5 < 500. What does this
imply about x; and x,? Also, use the fact that x5 > 0.]
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1.6 EXERCISES

1.

Suppose an economy has only two sectors: Goods and Ser-
vices. Each year, Goods sells 80% of its output to Services
and keeps the rest, while Services sells 70% of its output to
Goods and retains the rest. Find equilibrium prices for the
annual outputs of the Goods and Services sectors that make
each sector’s income match its expenditures.

Goods

Services

Find another set of equilibrium prices for the economy in
Example 1. Suppose the same economy used Japanese
yen instead of dollars to measure the values of the various
sectors’ outputs. Would this change the problem in any way?
Discuss.

Consider an economy with three sectors: Fuels and Power,
Manufacturing, and Services. Fuels and Power sells 80%
of its output to Manufacturing, 10% to Services, and retains
the rest. Manufacturing sells 10% of its output to Fuels and
Power, 80% to Services, and retains the rest. Services sells
20% to Fuels and Power, 40% to Manufacturing, and retains
the rest.

a. Construct the exchange table for this economy.

b. Develop a system of equations that leads to prices at
which each sector’s income matches its expenses. Then
write the augmented matrix that can be row reduced to
find these prices.

c. [M] Find a set of equilibrium prices when the price for
the Services output is 100 units.

Suppose an economy has four sectors: Mining, Lumber,
Energy, and Transportation. Mining sells 10% of its output
to Lumber, 60% to Energy, and retains the rest. Lumber
sells 15% of its output to Mining, 50% to Energy, 20% to
Transportation, and retains the rest. Energy sells 20% of its
output to Mining, 15% to Lumber, 20% to Transportation,
and retains the rest. Transportation sells 20% of its output to
Mining, 10% to Lumber, 50% to Energy, and retains the rest.

a. Construct the exchange table for this economy.

b. [M] Find a set of equilibrium prices for the economy.

An economy has four sectors: Agriculture, Manufacturing,
Services, and Transportation. Agriculture sells 20% of its
output to Manufacturing, 30% to Services, 30% to Trans-
portation, and retains the rest. Manufacturing sells 35% of its
output to Agriculture, 35% to Services, 20% to Transporta-
tion, and retains the rest. Services sells 10% of its output to
Agriculture, 20% to Manufacturing, 20% to Transportation,

and retains the rest. Transportation sells 20% of its output
to Agriculture, 30% to Manufacturing, 20% to Services, and
retains the rest.

a. Construct the exchange table for this economy.

b. [M] Find a set of equilibrium prices for the economy if
the value of Transportation is $10.00 per unit.

c. The Services sector launches a successful “eat farm fresh”
campaign, and increases its share of the output from the
Agricultural sector to 40%, whereas the share of Agri-
cultural production going to Manufacturing falls to 10%.
Construct the exchange table for this new economy.

d. [M] Find a set of equilibrium prices for this new economy
if the value of Transportation is still $10.00 per unit.
What effect has the “eat farm fresh” campaign had on the
equilibrium prices for the sectors in this economy?

Balance the chemical equations in Exercises 6—11 using the vector
equation approach discussed in this section.

6.

10.

11.

Aluminum oxide and carbon react to create elemental alu-
minum and carbon dioxide:

A1203 + C — Al + C02

[For each compound, construct a vector that lists the numbers
of atoms of aluminum, oxygen, and carbon.]

Alka-Seltzer contains sodium bicarbonate (NaHCO;) and
citric acid (H;CgHs07). When a tablet is dissolved in water,
the following reaction produces sodium citrate, water, and
carbon dioxide (gas):

NaHCO3 + H3C6H507 — Na3C6H507 + Hzo + COz

Limestone, CaCOs, neutralizes the acid, H;0, in acid rain by
the following unbalanced equation:

H;0 + CaCO; — H,0 + Ca 4 CO,

Boron sulfide reacts violently with water to form boric acid
and hydrogen sulfide gas (the smell of rotten eggs). The
unbalanced equation is

BzSg, + HzO d H3BO3 + st

[M] If possible, use exact arithmetic or a rational format for
calculations in balancing the following chemical reaction:

PbN6 + CranOg — Pb304 + Cr203 + MH02 + NO

[M] The chemical reaction below can be used in some in-
dustrial processes, such as the production of arsene (AsHj).
Use exact arithmetic or a rational format for calculations to
balance this equation.

MnS + A52Cr10035 =+ HzSO4
— HMDO4 + ASH3 + CI'S}OIZ + H20



12. Find the general flow pattern of the network shown in the
figure. Assuming that the flows are all nonnegative, what is
the smallest possible value for x,?

B
X2 —> 100

X Y X3

X ee———80
c

13. a. Find the general flow pattern of the network shown in the
figure.

b. Assuming that the flow must be in the directions indi-
cated, find the minimum flows in the branches denoted
by x5, X3, X4, and Xxs.

30 40
VN
Y
A X X C
80 — 2 5_4—100
B
XYy A Xg
60)—E X3 X4 D—>90
A
A 4
20 40

14. a. Find the general traffic pattern of the freeway network

15.
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shown in the figure. (Flow rates are in cars/minute.)

b. Describe the general traffic pattern when the road whose

flow is x5 is close

d.

¢. When x5 = 0, what is the minimum value of x,?

Ral

A
80 >
X5y
90 <
D

Intersections in England are often constructed as one-way
“roundabouts,” such as the one shown in the figure. Assume
that traffic must travel in the directions shown. Find the
general solution of the network flow. Find the smallest

possible value for xg.

A
60—)—1
804—1:

SOLUTIONS TO PRACTICE PROBLEMS

B
l}—>70

rc—(—IOO

1. Write the percentages as decimals. Since all output must be taken into account, each
column must sum to 1. This fact helps to fill in any missing entries.

Distribution of Output from:

Agriculture Mining Manufacturing Purchased by:
.65 .20 .20 Agriculture
.05 .10 .30 Mining
.30 .70 .50 Manufacturing

2. Since x5 < 500, the equations D and A for x; and x, imply that x; > 100
and x, < 700. The fact that x5 > 0 implies that x; < 600 and x, > 200. So,
100 < x; < 600, and 200 < x, < 700.

1.7 LINEAR INDEPENDENCE

The homogeneous equations in Section 1.5 can be studied from a different perspective
by writing them as vector equations. In this way, the focus shifts from the unknown
solutions of Ax = 0 to the vectors that appear in the vector equations.
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For instance, consider the equation

1 4 2 0
X121 +x2| 5| +x3] 1| =10 (D)
3 6 0 0

This equation has a trivial solution, of course, where x; = x, = x3 =0. As in
Section 1.5, the main issue is whether the trivial solution is the only one.

An indexed set of vectors {v;,...,v,} in R" is said to be linearly independent
if the vector equation

X1vi + XV + -+ x,v, =0
has only the trivial solution. The set {vy, ..., V,} is said to be linearly dependent
if there exist weights ¢, ..., ¢,, not all zero, such that

civit+evat ey, =0 2

Equation (2) is called a linear dependence relation among vy, ..., v, when the
weights are not all zero. An indexed set is linearly dependent if and only if it is not
linearly independent. For brevity, we may say that v, ..., v, are linearly dependent
when we mean that {vy,...,v,} is a linearly dependent set. We use analogous
terminology for linearly independent sets.

1 4 2
EXAMPLE 1 Letvi=|2|,v2=|5|,andvy; = | 1
3 6 0

a. Determine if the set {v, v,, v3} is linearly independent.
b. If possible, find a linear dependence relation among vy, v,, and vs.

SOLUTION

a. We must determine if there is a nontrivial solution of equation (1) above. Row oper-
ations on the associated augmented matrix show that

1 4 2 0 1 4 2 0
2 5 1 0f~]0 =3 =3 O
36 0 O 0O 0 0 O

Clearly, x; and x;, are basic variables, and x3 is free. Each nonzero value of x3
determines a nontrivial solution of (1). Hence vy, v, v3 are linearly dependent (and
not linearly independent).

b. To find a linear dependence relation among v;, v, and v3, completely row reduce
the augmented matrix and write the new system:

1 0 -2 0 X1 —2x3=0

0 1 1 0 X2+ x3=0

O 0 0 O 0=0
Thus x; = 2x3, X, = —x3, and x3 is free. Choose any nonzero value for x;—say,
x3 = 5. Then x; = 10 and x, = —5. Substitute these values into equation (1) and

obtain
10V1 — 5V2 + 5V3 =0

This is one (out of infinitely many) possible linear dependence relations among v,
Vs, and v3. ]



1.7 Linear Independence 57

Linear Independence of Matrix Columns

Suppose that we begin with a matrix A = [a; --- a, ] instead of a set of vectors. The
matrix equation Ax = 0 can be written as

xja; +x2a, +---+x,a, =0

Each linear dependence relation among the columns of A corresponds to a nontrivial
solution of Ax = 0. Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation

Ax = 0 has only the trivial solution. 3)
0 1
EXAMPLE 2 Determine if the columns of the matrix A = |1 2 —1 | are
5 8

linearly independent.

SOLUTION To study Ax = 0, row reduce the augmented matrix:

0O 1 4 0 1 2 -1 0 1 2 -1 0
1 2 -1 O0f~]0 1 4 Of~]0 1 4 O
5 8 0 0 0 -2 5 0 0 0 13 0

At this point, it is clear that there are three basic variables and no free variables. So
the equation Ax = 0 has only the trivial solution, and the columns of A are linearly
independent. [ ]

Sets of One or Two Vectors

A set containing only one vector—say, v—is linearly independent if and only if v is
not the zero vector. This is because the vector equation x;v = 0 has only the trivial
solution when v # 0. The zero vector is linearly dependent because x;0 = 0 has many
nontrivial solutions.

The next example will explain the nature of a linearly dependent set of two vectors.

EXAMPLE 3 Determine if the following sets of vectors are linearly independent.

IS N

SOLUTION
a. Notice that v, is a multiple of v, namely, v, = 2v,. Hence —2v;| + v, = 0, which
shows that {vy, v,} is linearly dependent.
b. The vectors v; and v, are certainly not multiples of one another. Could they be
linearly dependent? Suppose ¢ and d satisfy
cvi+dvy =0

If ¢ # 0, then we can solve for v; in terms of v,, namely, v{ = (—d/c)v,. This
result is impossible because v is not a multiple of v,. So ¢ must be zero. Similarly,
d must also be zero. Thus {vy, v,} is a linearly independent set. ]
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(3, 1)

©.2),

X

Linearly dependent

3.2,

6.2,

Linearly independent

FIGURE 1

THEOREM 7

The arguments in Example 3 show that you can always decide by inspection when a
set of two vectors is linearly dependent. Row operations are unnecessary. Simply check
whether at least one of the vectors is a scalar times the other. (The test applies only to
sets of two vectors.)

A set of two vectors {vy, v,} is linearly dependent if at least one of the vectors is
a multiple of the other. The set is linearly independent if and only if neither of the
vectors is a multiple of the other.

In geometric terms, two vectors are linearly dependent if and only if they lie on the
same line through the origin. Figure 1 shows the vectors from Example 3.

Sets of Two or More Vectors

The proof of the next theorem is similar to the solution of Example 3. Details are given
at the end of this section.

Characterization of Linearly Dependent Sets

An indexed set S = {vy,...,v,} of two or more vectors is linearly dependent if
and only if at least one of the vectors in § is a linear combination of the others. In
fact, if S is linearly dependent and v; # 0, then some v; (with j > 1) is a linear
combination of the preceding vectors, vy,...,V;_i.

Warning: Theorem 7 does not say that every vector in a linearly dependent set is a
linear combination of the preceding vectors. A vector in a linearly dependent set may
fail to be a linear combination of the other vectors. See Practice Problem 3.

3 1
EXAMPLE 4 Letu= |1 [andv = | 6 |. Describe the set spanned by u and v,
0 0

and explain why a vector w is in Span {u, v} if and only if {u, v, w} is linearly dependent.

SOLUTION The vectors u and v are linearly independent because neither vector is a
multiple of the other, and so they span a plane in R3. (See Section 1.3.) In fact,
Span {u, v} is the x;x,-plane (with x3 = 0). If w is a linear combination of u and v,
then {u, v, w} is linearly dependent, by Theorem 7. Conversely, suppose that {u, v, w}
is linearly dependent. By Theorem 7, some vector in {u, v, w} is a linear combination
of the preceding vectors (since u # 0). That vector must be w, since v is not a multiple
of u. So w is in Span {u, v}. See Fig. 2. ]

Linearly dependent, Linearly independent,
w in Span{u, v} w not in Span{u, v}

FIGURE 2 Linear dependence in R
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If p > n, the columns are linearly
dependent.

2,1

X

L]
4, -1)
FIGURE 4
A linearly dependent set in R

THEOREM 9
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Example 4 generalizes to any set {u, v, w} in R® with u and v linearly independent.
The set {u, v, w} will be linearly dependent if and only if w is in the plane spanned by
uand v.

The next two theorems describe special cases in which the linear dependence of a
set is automatic. Moreover, Theorem 8 will be a key result for work in later chapters.

If a set contains more vectors than there are entries in each vector, then the set

is linearly dependent. That is, any set {vy,...,V,} in R” is linearly dependent if
p > n.
PROOF Let A=[v; --- v,]. Then 4 is n x p, and the equation Ax = 0 corre-

sponds to a system of n equations in p unknowns. If p > n, there are more variables
than equations, so there must be a free variable. Hence Ax = 0 has a nontrivial solution,
and the columns of A are linearly dependent. See Fig. 3 for a matrix version of this
theorem. [ |

Warning: Theorem 8 says nothing about the case in which the number of vectors in
the set does not exceed the number of entries in each vector.

4
—1
8, because there are three vectors in the set and there are only two entries in each vector.
Notice, however, that none of the vectors is a multiple of one of the other vectors. See
Fig. 4. [ |

EXAMPLE 5 The vectors [ ? ], [ :|, |: _§:| are linearly dependent by Theorem

If aset S = {vy,...,v,} in R" contains the zero vector, then the set is linearly
dependent.

PROOF By renumbering the vectors, we may suppose v; = 0. Then the equation
1vy + 0vy + --- + 0v, = 0 shows that S is linearly dependent. [ |

EXAMPLE 6 Determine by inspection if the given set is linearly dependent.

1] 2773 277 o _i _2
a |70 [1]. |1 b. [3].]0[. |1 OO B S

6] 9 5] 0] |8 0 e
SOLUTION

a. The set contains four vectors, each of which has only three entries. So the set is
linearly dependent by Theorem 8.

b. Theorem 8 does not apply here because the number of vectors does not exceed the
number of entries in each vector. Since the zero vector is in the set, the set is linearly
dependent by Theorem 9.

c. Compare the corresponding entries of the two vectors. The second vector seems to
be —3/2 times the first vector. This relation holds for the first three pairs of entries,
but fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and
hence they are linearly independent. [ |
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Mastering: Linear In general, you should read a section thoroughly several times to absorb an

Independence 1-31 important concept such as linear independence. The notes in the Study Guide for
this section will help you learn to form mental images of key ideas in linear algebra.
For instance, the following proof is worth reading carefully because it shows how the
definition of linear independence can be used.

PROOF OF THEOREM 7 (Characterization of Linearly Dependent Sets)
If some v; in S equals a linear combination of the other vectors, then v; can be
subtracted from both sides of the equation, producing a linear dependence relation
with a nonzero weight (—1) on v;. [For instance, if v; = c2vs + c3v3, then 0 =
(=1)vi + c2v2 + ¢3v3 + 0v4 + -+ 4+ 0v,,.] Thus S is linearly dependent.

Conversely, suppose S is linearly dependent. If v; is zero, then it is a (trivial)
linear combination of the other vectors in S. Otherwise, vi # 0, and there exist weights
C1,...,Cp,notall zero, such that

C1Vi + Vo + -+ CpV) =0

Let j be the largest subscript for which ¢; # 0. If j =1, then ¢;v; = 0, which is
impossible because v; # 0. So j > 1, and

civy + -+ ¢V +0Vj+1 +"'+0Vp =0

CiV; = —C1Vp —+++—Cj—1Vj—1

=S _S)y,
v = Vi+ -+ vj—; H
Cj ¢j

PRACTICE PROBLEMS

3 —6 0 3
Letu = 2 (,v= 1|{,w=]| -5 ]|,andz = 7
—4 7 2 -5

1. Are the sets {u, v}, {u,w}, {u,z}, {v,w}, {v,z}, and {w,z} each linearly indepen-
dent? Why or why not?

2. Does the answer to Problem 1 imply that {u, v, w, z} is linearly independent?

3. To determine if {u, v, w,z} is linearly dependent, is it wise to check if, say, w is a
linear combination of u, v, and z?

4. Is {u, v, w, z} linearly dependent?

1.7 EXERCISES

In Exercises 1-4, determine if the vectors are linearly indepen- 0 -3 9 —4 =3 0

dent. Justify each answer. 5 2 1 =7 6 0 -1 5
=1 4 -5 : 1 1 =5

5 7 9 0 U 1 -4 —2 2 1 -10
1. [0 |, 2|, 4 2. | 2], 0|, 3 -
0] L-6] [-8 31 L-8 1 1 4 -3 0 T 12 3 2
2 =7 -2 4 -6 2
2 —4 -1 =3 -4 -5 7 5 0 1 -1 3
M ST R R R - -
In Exercises 9 and 10, (a) for what values of & is vz in

In Exercises 5-8, determine if the columns of the matrix form a Span {vy, v,}, and (b) for what values of % is {v, v, v3} linearly
linearly independent set. Justify each answer. dependent? Justify each answer.

~
1
wn
L 1
>



1 -3 5

9. vV = -3 , Vo = 9 , V3 = -7
| 2] | —6 | L 7]
17 =37 27

10. vV = -3 , Vo) = 9 , V3 = -5
L —5 | L 15 ] L h ]

In Exercises 11-14, find the value(s) of & for which the vectors
are linearly dependent. Justify each answer.

2 4 -2 3 —6 9

1. | =2 |,| =6 |, 2 12. | =6 |, 40,1 h
L 4L 71 L ] L 1] L-3] L3]
F 1] [=27 [ 37 17 [-37 [2]

13. 51,1 =9, h 14. | -2 |, 71,11
L-3] L 6] L9 L4 [ 6] 7]

Determine by inspection whether the vectors in Exercises 15-20
are linearly independent. Justify each answer.

_ 2 -3
15. f][g][;][_;] 16. | —4 |, 6
L | 8 ~12
57 To0 -7 -
17. | =3 |.|0],| 2 18. j][_é][g][”
-1 |o 4 L
r—871 [ 2 ! -2 0
19. | 12],] -3 20. a1, 51,10
| 4] | -1 | -7 3 0

In Exercises 21 and 22, mark each statement True or False. Justify
each answer on the basis of a careful reading of the text.

21. a. The columns of a matrix A are linearly independent if the

equation Ax = 0 has the trivial solution.

b. If S isalinearly dependent set, then each vector is a linear
combination of the other vectors in S.

c. The columns of any 4 x 5 matrix are linearly dependent.
d. If x and y are linearly independent, and if {x,y,z} is
linearly dependent, then z is in Span {x, y}.

22. a. If u and v are linearly independent, and if w is in

Span {u, v}, then {u, v, w} is linearly dependent.

b. If three vectors in R? lie in the same plane in R, then
they are linearly dependent.

c. If asetcontains fewer vectors than there are entries in the
vectors, then the set is linearly independent.

d. If asetin R” is linearly dependent, then the set contains
more than n vectors.

In Exercises 23-26, describe the possible echelon forms of the
matrix. Use the notation of Example 1 in Section 1.2.

23. Ais a2 x 2 matrix with linearly dependent columns.

24. Ais a3 x 3 matrix with linearly independent columns.
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25. Aisa4d x2matrix, A = [a,
a.

a], and a, is not a multiple of

26. Ais a4 x3matrix, A =[a; a, a3],such that{a;,a,}is
linearly independent and a3 is not in Span {a,, a,}.

27. How many pivot columns must a 6 X 4 matrix have if its
columns are linearly independent? Why?

28. How many pivot columns must a 4 x 6 matrix have if its
columns span R*? Why?

29. Construct 3 x 2 matrices A and B such that Ax = 0 has a
nontrivial solution, but Bx = 0 has only the trivial solution.

30. a. Fill in the blank in the following statement: “If A4 is
an m x n matrix, then the columns of A are linearly
independent if and only if A has pivot columns.”

b. Explain why the statement in (a) is true.

Exercises 31 and 32 should be solved without performing row
operations. [Hint: Write Ax = 0 as a vector equation.]

2 3 57
. -5 1 —4 .
31. Given A = 3 1 —al observe that the third column
1 0 1

is the sum of the first two columns. Find a nontrivial solution
of Ax = 0.

4 3 =57
32. GivenA=| -2 -2 4 |, observe that the first column
-2 =3 7

minus three times the second column equals the third column.
Find a nontrivial solution of Ax = 0.

Each statement in Exercises 33-38 is either true (in all cases)
or false (for at least one example). If false, construct a specific
example to show that the statement is not always true. Such
an example is called a counterexample to the statement. If a
statement is true, give a justification. (One specific example
cannot explain why a statement is always true. You will have to
do more work here than in Exercises 21 and 22.)

33. Ifv,,...,vsareinR*and v; = 2v, + v, then {v,, v5, v3, v}
is linearly dependent.

34. If v, and v, are in R* and v, is not a scalar multiple of vy,
then {v;, v,} is linearly independent.

35. If vy,...,vs are in R3 and v3 = 0, then {v|, V2, V3, V4, Vs5} is
linearly dependent.

36. If vy, v, v3 are in R? and v; is not a linear combination of
V1, V2, then {v, v,, v3} is linearly independent.

37. If vy,..., vy are in R* and {v,, v,, v3} is linearly dependent,
then {v,, v,, v3, v4} is also linearly dependent.

38. If {v,,...,v4}is alinearly independent set of vectors in R*,
then {v;, vy, v3} is also linearly independent. [Hint: Think
about x;v; + xovs + x3v3 + 0-v4 = 0.]

39. Suppose A is an m x n matrix with the property that for all b
in R” the equation Ax = b has at most one solution. Use the
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definition of linear independence to explain why the columns 12 10 -6 8 4 —14

of A must be linearly independent. -7 -6 4 -5 -7 9

. . . 42. A= 9 9 -9 9 9 -—18

40. Suppose an m x n matrix A has n pivot columns. Explain 4 3 _1 0 _8 )
why for each b in R” the equation Ax = b has at most one ] 7 _s 6 1 11

solution. [Hint: Explain why Ax = b cannot have infinitely
many solutions.]

[M] In Exercises 41 and 42, use as many columns of A4 as possible
to construct a matrix B with the property that the equation Bx = 0
has only the trivial solution. Solve Bx = 0 to verify your work.

41.

A=

1.8

43. [M] With A and B as in Exercise 41, select a column v of 4
that was not used in the construction of B and determine if
v is in the set spanned by the columns of B. (Describe your
calculations.)

3 -4 10 7 -4

-5 -3 -7 11 15 44. [M] Repeat Exercise 43 with the matrices A and B from
4 3 5 2 1 Exercise 42. Then give an explanation for what you discover,
8§ —7 23 4 15 assuming that B was constructed as specified.

SOLUTIONS TO PRACTICE PROBLEMS

Span{u, v, z} 1. Yes. In each case, neither vector is a multiple of the other. Thus each set is linearly
\ independent.

2. No. The observation in Practice Problem 1, by itself, says nothing about the linear
independence of {u, v, w, z}.

3. No. When testing for linear independence, it is usually a poor idea to check if one
selected vector is a linear combination of the others. It may happen that the selected
vector is not a linear combination of the others and yet the whole set of vectors is
linearly dependent. In this practice problem, w is not a linear combination of u, v,
and z.

4. Yes, by Theorem 8. There are more vectors (four) than entries (three) in them.

INTRODUCTION TO LINEAR TRANSFORMATIONS

The difference between a matrix equation Ax = b and the associated vector equation
xja; + .-+ + x,a, = b is merely a matter of notation. However, a matrix equation
Ax = b can arise in linear algebra (and in applications such as computer graphics and
signal processing) in a way that is not directly connected with linear combinations of
vectors. This happens when we think of the matrix A as an object that “acts” on a vector
x by multiplication to produce a new vector called Ax.

For instance, the equations

1 1
D0 s =] e 30 5 ] =10
1 3
r T r r
A X b A u 0

say that multiplication by A transforms x into b and transforms u into the zero vector.
See Fig. 1.



1.8 Introduction to Linear Transformations 63

multiplication
. m b
° L ]
0 multiplication
: /\
by A
u, 9
g 2

FIGURE 1 Transforming vectors via matrix
multiplication.

From this new point of view, solving the equation Ax = b amounts to finding
all vectors x in R* that are transformed into the vector b in R? under the “action” of
multiplication by A.

The correspondence from x to AX is a function from one set of vectors to another.
This concept generalizes the common notion of a function as a rule that transforms one
real number into another.

A transformation (or function or mapping) 7" from R” to R™ is a rule that assigns
to each vector x in R” a vector 7'(x) in R™. The set R” is called the domain of 7', and
R™ is called the codomain of 7. The notation 7" : R” — R™ indicates that the domain
of T is R” and the codomain is R™. For x in R”, the vector 7(x) in R™ is called the
image of x (under the action of T'). The set of all images T'(x) is called the range of T'.
See Fig. 2.

Domain Codomain

FIGURE 2 Domain, codomain, and range
of T : R" — R™,

The new terminology in this section is important because a dynamic view of
matrix—vector multiplication is the key to understanding several ideas in linear algebra
and to building mathematical models of physical systems that evolve over time. Such
dynamical systems will be discussed in Sections 1.10, 4.8, and 4.9 and throughout
Chapter 5.

Matrix Transformations

The rest of this section focuses on mappings associated with matrix multiplication. For
each x in R”, T'(x) is computed as Ax, where A4 is an m x n matrix. For simplicity, we
sometimes denote such a matrix transformation by x +— Ax. Observe that the domain
of T is R” when A has n columns and the codomain of 7 is R” when each column of
A has m entries. The range of T is the set of all linear combinations of the columns of
A, because each image 7 (x) is of the form Ax.
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1 =3 ) 3 3
EXAMPLE 1 1Let A= 3 5 ,uz[ ],b: 2|,e¢e=1]2], and
-1
-1 7 =5 5
define a transformation 7 : R? — R by T'(x) = Ax, so that
1 -3 X X1 — 3)(72
%, T(x)=Ax=| 3 5 [xl}z 3x1 + 5x;
-1 7t —x1 + 7x,
a. Find T'(u), the image of u under the transformation 7.
5 “I' p. Find an x in R? whose image under 7 is b.
‘ fus= [—1} c. Is there more than one x whose image under 7 is b?
d. Determine if ¢ is in the range of the transformation 7.
i ) ! SOLUTION
3
a. Compute
1 -3 5 5
%, *2 T(u) = Au = 3 5 |:_1:| = 1
-1 7 -9

b. Solve T(x) = b for x. That is, solve Ax = b, or

L3 3
3 s [ }: 2 (1)
/{ } -1 7 |L* -5

5
Twy=| 1 =
? Using the method discussed in Section 1.4, row reduce the augmented matrix:
1 -3 3 1 -3 37 1 -3 3 1 015
35 2|(~|0 14 -T7|~]0 1-=5f~[0 1-=5 2)
-1 7 =5 0 4 -2 0 0 O 0 0 O

1.5

Hence x; = 1.5, x, = —.5, and x = |:_ 5

]. The image of this x under 7 is the

given vector b.

¢. Any x whose image under 7 is b must satisfy equation (1). From (2), it is clear that
equation (1) has a unique solution. So there is exactly one x whose image is b.

d. The vector cis in the range of T if ¢ is the image of some x in R, that is, if ¢ = T'(x)
for some x. This is just another way of asking if the system Ax = c is consistent. To
find the answer, row reduce the augmented matrix:

1 -3 3 1 -3 3 1 -3 3 1 =3 3

35 2|(~|0 14 -T7|~]0 1 2|~]0 1 2

-1 7 5 0 4 8 0 14 =7 0 0 -35
The third equation, 0 = —35, shows that the system is inconsistent. So ¢ is not in
the range of T'. u

The question in Example 1(c) is a uniqueness problem for a system of linear
equations, translated here into the language of matrix transformations: Is b the image
of a unique x in R”? Similarly, Example 1(d) is an existence problem: Does there exist
an X whose image is ¢?

The next two matrix transformations can be viewed geometrically. They reinforce
the dynamic view of a matrix as something that transforms vectors into other vectors.
Section 2.7 contains other interesting examples connected with computer graphics.
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A projection transformation.

sheared sheep
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1 0 0
EXAMPLE 2 If A=|0 1 0|, then the transformation x — AX projects
0O 0 0
points in R3 onto the X1Xxz-plane because
X1 l O 0 X1 X1
X |0 1 0 X2 | = | x2
X3 0 0 0 X3 0
See Fig. 3. [ |

1 3
0 1
T (x) = Ax is called a shear transformation. It can be shown that if 7" acts on each
point in the 2 x 2 square shown in Fig. 4, then the set of images forms the shaded
parallelogram. The key idea is to show that 7 maps line segments onto line segments
(as shown in Exercise 27) and then to check that the corners of the square map onto

EXAMPLE 3 Let 4 = |: i| The transformation 7 : R?> — R? defined by

the vertices of the parallelogram. For instance, the image of the point u = [g} is

o[} 8-y - [2)

deforms the square as if the top of the square were pushed to the right while the base is
held fixed. Shear transformations appear in physics, geology, and crystallography. M

X R)

=

T X
2 2 8

FIGURE 4 A shear transformation.

Linear Transformations

Theorem 5 in Section 1.4 shows that if A is m x n, then the transformation x — AX has
the properties
A(u+v) = Au+ Av and A(cu) = cAu

forallu, vin R” and all scalars c. These properties, written in function notation, identify
the most important class of transformations in linear algebra.

A transformation (or mapping) 7 is linear if:
(i) T(wa+v) =T(u)+ T(v) forallu,v inthe domain of T';
(i) T'(cu) = c¢T(u) for all scalars ¢ and all u in the domain of 7'.

Every matrix transformation is a linear transformation. Important examples of
linear transformations that are not matrix transformations will be discussed in Chapters
4 and 5.
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Linear transformations preserve the operations of vector addition and scalar mul-
tiplication. Property (i) says that the result 7'(u 4 v) of first adding u and v in R” and
then applying T is the same as first applying 7 to u and to v and then adding 7 (u) and
T(v) in R™. These two properties lead easily to the following useful facts.

If T is a linear transformation, then
T@0)=0 3
and
T(cu+dv)=cT(u)+dT(v) )

for all vectors u, v in the domain of 7" and all scalars ¢, d.

Property (3) follows from condition (ii) in the definition, because 7'(0) = T(0u) =
07 (u) = 0. Property (4) requires both (i) and (ii):
T(cu+dv)=T(cu)+T(dv) =cT () +dT(v)
Observe that if a transformation satisfies (4) for all u, v and ¢, d, it must be linear.

(Set ¢ = d =1 for preservation of addition, and set d = 0 for preservation of scalar
multiplication.) Repeated application of (4) produces a useful generalization:

T(civi+---+cpvp) =c1T(V1) + -+ ¢, T(v)) &)

In engineering and physics, (5) is referred to as a superposition principle. Think
of vi,...,V, as signals that go into a system and 7'(vy), ..., T(v,) as the responses of
that system to the signals. The system satisfies the superposition principle if whenever
an input is expressed as a linear combination of such signals, the system’s response is
the same linear combination of the responses to the individual signals. We will return
to this idea in Chapter 4.

EXAMPLE 4 Given a scalar r, define 7 : R> — R? by T(x) = rx. T is called a
contraction when 0 < r < 1 and a dilation when r > 1. Let r = 3, and show that T’
is a linear transformation.

SOLUTION Let u, v be in R? and let ¢, d be scalars. Then
T(cu+dv) =3(cu+dv) Definition of T
=3cu+ 3dv
= c(3u) + d(3v)
=cT()+dT(v)

Vector arithmetic

Thus 7 is a linear transformation because it satisfies (4). See Fig. 5. [ |
X, X,
2 T T(u) 2 [
—_—— Ld
U, °

FIGURE 5 A dilation transformation.
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EXAMPLE 5 Define a linear transformation 7 : R? — R? by
_ 0 —1 X1 | =%
reo=[1 %) w] =[]
. . 4 2 6
Find the images under T of u = [1},v= [3:|,andu+v= |:4:|

R R R
rasw=|1 S][4]=] 7]

Note that 7'(u + v) is obviously equal to 7'(u) + 7' (v). It appears from Fig. 6 that
T rotates u, v, and u + v counterclockwise about the origin through 90°. In fact, T
transforms the entire parallelogram determined by u and v into the one determined by
T (u) and T'(v). (See Exercise 28.) ]

.T(u +v)

FIGURE 6 A rotation transformation.

The final example is not geometrical; instead, it shows how a linear mapping can
transform one type of data into another.

EXAMPLE 6 A company manufactures two products, B and C. Using data from
Example 7 in Section 1.3, we construct a “unit cost” matrix, U = [b ¢], whose
columns describe the “costs per dollar of output” for the products:

Product
B C
45 .40 | Materials
U=1.25 .35 | Labor
.15 .15 | Overhead

Letx = (x1, x2) be a “production” vector, corresponding to x; dollars of product B and
x; dollars of product C, and define T : R? — R? by

45 .40 Total cost of materials
T(x)=Ux=x;| .25 | + x| .30 | = | Total cost of labor
15 15 Total cost of overhead

The mapping T transforms a list of production quantities (measured in dollars) into a
list of total costs. The linearity of this mapping is reflected in two ways:

1. If production is increased by a factor of, say, 4, from x to 4x, then the costs will
increase by the same factor, from 7(x) to 47 (x).
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2. If x and y are production vectors, then the total cost vector associated with the
combined production x +y is precisely the sum of the cost vectors 7'(x) and

T(y).

PRACTICE PROBLEMS

1. Suppose T : R® — R? and T (x) = Ax for some matrix A and for each x in R>. How
many rows and columns does A have?

1

2. LetA = [0

0 . . o .
1 :| Give a geometric description of the transformation x — Ax.

3. The line segment from 0 to a vector u is the set of points of the form ru, where
0 <t < 1. Show that a linear transformation 7" maps this segment into the segment

between 0 and 7 (u).

1.8 EXERCISES

1. LetA = [g g],anddeﬁneT:Rz—HszyT(x)=Ax.
Find the images under 7 of u = [_;] andv = [Z]
10 0 3 a
2. Let A=| 0 % 0, u= 6|, and v=| b
0 0 % -9 c

Define T : R* — R*® by T'(x) = Ax. Find T'(u) and T'(v).

In Exercises 3-6, with T defined by 7' (x) = Ax, find a vector x
whose image under 7 is b, and determine whether x is unique.

1 0 -3 )
3.4=1-3 1 6|,p=]| 3
| 2 —2 -1 -1
1 -2 3 -6
4. A=l0 1 =3|,b=|—4
2 -5 6 -5
1 -5 -7 )
soa=| 3 3 5],1,_[_2]
i -3 2 1
3 -8 8 6
6. A=14y 1 2]'P=] 3
1 0 8 10

7. Let A be a 6 x 5 matrix. What must ¢ and b be in order to
define T : R — R? by T'(x) = Ax?

8. How many rows and columns must a matrix A have in order
to define a mapping from R? into R” by the rule 7'(x) = Ax?

For Exercises 9 and 10, find all x in R* that are mapped into the
zero vector by the transformation x — Ax for the given matrix A4.

1 -3 5 -5
9. 4=|0 1 -3 5
2 —4 4 —4

o

1.

32

1 0

A= 0 1
1 4
e

Letb = 1
- 0_

in the range of

why not?

(]

. Letb = 3
—1

4

10 -6
2 —4
2 3

10 8

, and let A be the matrix in Exercise 9. Is b

the linear transformation x — Ax? Why or

, and let A be the matrix in Exercise 10. Is

b in the ra_nge of the linear transformation x > Ax? Why or

why not?

In Exercises 13—16, use a rectangular coordinate system to plot

2 4
mation 7. (Make a separate and reasonably large sketch for each
exercise.) Describe geometrically what 7" does to each vector x

u= |: > ], V= [ -2 ], and their images under the given transfor-

in R2.

13, T(x) = :_(1) _ﬂ[i;]
14. T(x) = g (2)2
15. T(x) = (1) 52
16. T(x) = :8 (2)2

17. Let T : R?> — R? be a linear transformation that maps u =

3. 4 3. -1
|:4:|1nto|:1:|andmapsv—[3]mto|: 3):|.Usethefact

that 7" is linear to find the images under 7' of 2u, 3v, and
2u + 3v.



18.

19.

20.

The figure shows vectors u, v, and w, along with the images
T (u) and T'(v) under the action of a linear transformation
T : R? — R2. Copy this figure carefully, and draw the image
T (w) as accurately as possible. [Hint: First, write w as a
linear combination of u and v.]

X

T(v)

° T(u)

Lete, = [é],ez = [?],yl = |:§i|,andy2 = [_é],and

let 7 : R*> — R? be a linear transformation that maps e, into

y, and maps e, into y,. Find the images of [ g ] and[ il ]
- 2

_ X1 _ -3 _ 7
Let x = |:x2]’ A2 —|: 5], and v, = [_2], and let

T : R? — R? be a linear transformation that maps x into
X1Vy + X»V,. Find a matrix A such that 7'(x) is Ax for each x.

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22,

23.

a. A linear transformation is a special type of function.

b. If Ais a3 x 5 matrix and 7T is a transformation defined
by T(x) = Ax, then the domain of T is R3.

c. If Aisanm x n matrix, then the range of the transforma-
tion X > Ax is R™.

d. Every linear transformation is a matrix transformation.
e. A transformation 7 is linear if and only if
T(c1vi + cava) = 1T (Vi) + ¢2T(v2)

for all v, and v, in the domain of 7" and for all scalars ¢,
and ¢,.

a. The range of the transformation x > AXx is the set of all
linear combinations of the columns of A.

b. Every matrix transformation is a linear transformation.

c. If T:R" — R" is a linear transformation and if ¢ is in
R™, then a uniqueness question is “Is ¢ in the range of
T?”

d. Alinear transformation preserves the operations of vector
addition and scalar multiplication.

e. A linear transformation 7' : R" — R” always maps the
origin of R” to the origin of R”.

Define f : R — R by f(x) = mx + b.
a. Show that f is a linear transformation when b = 0.

b. Find a property of a linear transformation that is violated
when b # 0.

c. Why is f called a linear function?

24.

25.

26.

217.

28.

29.

30.

31.
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An gaffine transformation T : R" — R has the form T (x) =
Ax + b, with A an m x n matrix and b in R”. Show
that 7 is not a linear transformation when b # 0. (Affine
transformations are important in computer graphics.)

Givenv # 0 and p in R”, the line through p in the direction of
v has the parametric equation X = p + tv. Show that a linear
transformation 7" : R” — R” maps this line onto another line
or onto a single point (a degenerate line).

a. Show that the line through vectors p and q in R” may be
written in the parametric form x = (1 —7)p + tq. (Refer
to the figure with Exercises 21 and 22 in Section 1.5.)

b. The line segment from p to q is the set of points of the
form (1 —#)p + ¢q for 0 < ¢ < 1 (as shown in the figure
below). Show that a linear transformation 7" maps this
line segment onto a line segment or onto a single point.

(r=0)p T(q@)

X
(1-Dp+1q Tx)

T(p)
t=1)q

Let u and v be linearly independent vectors in R?, and let P
be the plane through u, v, and 0. The parametric equation
of P is x =su+¢v (with s,¢ in R). Show that a linear
transformation 7 : R®* — R? maps P onto a plane through 0,
or onto a line through 0, or onto just the origin in R*. What
must be true about 7'(u) and 7'(v) in order for the image of
the plane P to be a plane?

Letu and v be vectors in R”. It can be shown that the set P of
all points in the parallelogram determined by u and v has the
formau + bv,for0 <a <1,0<b <1.LetT :R" - R”
be a linear transformation. Explain why the image of a point
in P under the transformation 7 lies in the parallelogram
determined by 7 (u) and 7'(v).

Let T : R? — R? be the linear transformation that reflects
each point through the x,-axis. Make two sketches similar
to Fig. 6 that illustrate properties (i) and (ii) of a linear
transformation.

Suppose vectors vy, ...,v, span R", and let 7 : R" — R"
be a linear transformation. Suppose T(v;) =0 for i =
1,..., p. Show that T is the zero transformation. That is,
show that if x is any vector in R”, then 7'(x) = 0.

Let 7 :R" — R™ be a linear transformation, and let
{V1, V2, v3} be a linearly dependent set in R”. Explain why
the set {7'(vy), T(v2), T (v3)} is linearly dependent.

In Exercises 32-36, column vectors are written as rows, such as
X = (X1, xp), and T (x) is written as T (x1, X,).

32.

33.

Show that the transformation 7 defined by T (x,x,) =
(x1 — 2|x2], x; — 4x7) is not linear.

Show that the transformation 7 defined by T(x,x,) =
(x1 — 2x2, x; — 3,2x; — 5x3) is not linear.
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34. Let T : R?> — R? be the transformation that reflects each

vector X = (xy,Xx,,x3) through the plane x3 =0 onto 37.

T(x) = (x1,x2,—x3). Show that T is a linear transforma-
tion. [See Example 4 for ideas.]

35. Let T : R?® — R? be the transformation that projects each

vector X = (x1, X, x3) onto the plane x, =0, so T(x) = 39.

(x1,0, x3). Show that T is a linear transformation.

36. LetT : R” — R™ be alinear transformation. Suppose {u, v}
is a linearly independent set, but {7'(u), T'(v)} is a linearly
dependent set. Show that 7'(x) = 0 has a nontrivial solution.
[Hint: Use the fact that ¢;T(u) + ;T (v) =0 for some 4
weights ¢; and ¢,, not both zero.]

[M] In Exercises 37 and 38, the given matrix determines a linear
transformation 7'. Find all x such that 7'(x) = 0.

2 3 5 =5 3 4 -7 0
-7 7 0 0 5 -8 7 4
-3 4 1 3 38 6 -8 6 4
-9 3 -6 —4 9 -7 =2 0
- g
[M] Letb = Z and let A be the matrix in Exercise 37.
-3

Is b in the range of the transformation x > Ax? If so, find
an X whose image under the transformation is b.

. [M] Letb = and let A be the matrix in Exercise 38.

Is b in the range of the transformation x — Ax? If so, find
an X whose image under the transformation is b.

E Mastering: Linear Transformations 1-34

SOLUTIONS TO PRACTICE PROBLEMS

X

x, 1. A must have five columns for Ax to be defined. A must have two rows for the
Au codomain of T to be R
v :’: T 2. Plot some random points (vectors) on graph paper to see what happens. A point such

x-axis (or xj-axis).

.+
< 1
_'_'_
[ ]
= ot
w

| as (4, 1) maps into (4, —1). The transformation x — Ax reflects points through the

. Letx = ruforsome ¢ such that0 < ¢ < 1. Since T is linear, 7 (tu) = ¢ T'(u), which

The transformation x — Ax. is a point on the line segment between 0 and 7T (u).

1.9 THE MATRIX OF A LINEAR TRANSFORMATION

Whenever a linear transformation 7" arises geometrically or is described in words, we
usually want a “formula” for 7' (x). The discussion that follows shows that every linear
transformation from R” to R” is actually a matrix transformation x — Ax and that
important properties of 7 are intimately related to familiar properties of A. The key to
finding A is to observe that T is completely determined by what it does to the columns

of the n x n identity matrix [,,.

T(e) =

0

EXAMPLE 1 The columns of I, = |:1 (1):| are e; = |:(1):| and e; = [(1)1| Sup-

pose T is a linear transformation from R? into R? such that

5 -3
=7 and T(ey) = 8
2 0

]
e, =
: [0 With no additional information, find a formula for the image of an arbitrary x in R2.
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SOLUTION Write

1 0
x=[i;]=x1|:0]+xz[11|=x1e1+x2e2 (1)

Since T is a linear transformation,

T(x) = x1T(e1) + x2T(e2) 2
5 -3 5x1—3x
= X1 -7 + X2 8 = —7X1 + 8.X2 |
2 0 2x1+0

The step from equation (1) to equation (2) explains why knowledge of 7' (e;) and
T (e,) is sufficient to determine 7 (x) for any x. Moreover, since (2) expresses T'(x) as
a linear combination of vectors, we can put these vectors into the columns of a matrix
A and write (2) as

T(x)=[T(e) T(e)] [jﬂ — Ax

Let 7 : R"” — R™ be a linear transformation. Then there exists a unique matrix
A such that
T(x) = Ax forall x in R”

In fact, A is the m X n matrix whose j th column is the vector 7'(e; ), where e; is
the jth column of the identity matrix in R":

A=[T@e) - T(e)] A3)

PROOF Write x=I1,x=1[e; --- e,]x = x1€e; + -+ x,e,, and use the linearity
of T to compute

T(X) = T(xlel + o+ xnen) = xlT(el) +-- an(en)

X1
=[T() - T()]| : |=4x

Xn
The uniqueness of A is treated in Exercise 33. [ |

The matrix A in (3) is called the standard matrix for the linear transforma-
tion 7.

We know now that every linear transformation from R” to R” can be viewed as
a matrix transformation, and vice versa. The term linear transformation focuses on a
property of a mapping, while matrix transformation describes how such a mapping is
implemented, as Examples 2 and 3 illustrate.

EXAMPLE 2 Find the standard matrix A for the dilation transformation 7'(x) = 3x,
for x in R2.
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FIGURE 2

The unit square.

SOLUTION Write

T(e1)=3e1=[8} and T(ez):3e2:|:(3):|

vt

N -

EXAMPLE 3 Let 7 :R?> — R? be the transformation that rotates each point in
R? about the origin through an angle ¢, with counterclockwise rotation for a positive
angle. We could show geometrically that such a transformation is linear. (See Fig. 6 in
Section 1.8.) Find the standard matrix A of this transformation.

SOLUTION |:1] rotates into [C(.)S(p i|, and [O} rotates into |:_Sm¢ i| See Fig. 1.
0 sin ¢ 1 cos ¢

By Theorem 10,
| cosg —sing
T | sing  cosg

Example 5 in Section 1.8 is a special case of this transformation, with ¢ = 7/2. [ |

FIGURE 1 A rotation transformation.

Geometric Linear Transformations of R?

Examples 2 and 3 illustrate linear transformations that are described geometrically.
Tables 1-4 illustrate other common geometric linear transformations of the plane.
Because the transformations are linear, they are determined completely by what they
do to the columns of /,. Instead of showing only the images of e; and e,, the tables
show what a transformation does to the unit square (Fig. 2).

Other transformations can be constructed from those listed in Tables 1-4 by
applying one transformation after another. For instance, a horizontal shear could be
followed by a reflection in the x,-axis. Section 2.1 will show that such a composition
of linear transformations is linear. (Also, see Exercise 34.)

Existence and Uniqueness Questions

The concept of a linear transformation provides a new way to understand the existence
and uniqueness questions asked earlier. The two definitions following Tables 1-4 give
the appropriate terminology for transformations.
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TABLE 1 Reflections

Transformation Image of the Unit Square Standard Matrix
Reflection through x, 1 0
the x;-axis [1} |: 0 —1 ]

LN
(=)
=

Reflection through x, -1 o0
the x,-axis [ 0 1 :|

— y
-1
Lo
Reflection through x, 0o 1
the line x, = x; X, = 1 0
0
1 u
1
o
Reflection through x, 0 —1
the line x, = —x; —1 0
-1
0
X
H="%
0
-1
Reflection through x, -1 0
the origin 0 —1
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TABLE 2 Contractions and Expansions

Transformation Image of the Unit Square Standard Matrix
Horizontal x, X, k 0
contraction |: 0 1 ]
and expansion [O} [O}
1 1
———
———

O<k<l1 k>1
Vertical x, X, 1 0
contraction |: 0 k ]
and expansion [0}
l J k
0
k
X X
1 1
0 0
O<k<l1 k>1
TABLE 3 Shears
Transformation Image of the Unit Square Standard Matrix
Horizontal shear Xy X 1k
[k] [ 0 1 ]
4 _ :
1 : —_—t
| — —
I
} X T X
k 1] k [1]
0 0
k>0
Vertical shear X X




TABLE 4 Projections
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Transformation Image of the Unit Square Standard Matrix
Projection onto X, 1 0
the x,-axis [ 0 0 ]
+ X,
0 1
o Lo
Projection onto x, 0 0
the x,-axis |: 0 1 ]
0
]
—

A mapping 7" : R" — R is said to be onto R if each b in R" is the image of

at least one X in R”.

Equivalently, T is onto R” when the range of T is all of the codomain R™. That is,
T maps R” onto R™ if, for each b in the codomain R", there exists at least one solution
of T(x) = b. “Does T map R” onto R”?” is an existence question. The mapping T is
not onto when there is some b in R” for which the equation 7'(x) = b has no solution.

See Fig. 3.

it T A. ai” r &
p()frl —_— pgfﬂ —_— ange

T is not onto R T is onto R™

FIGURE 3 Is the range of T all of R"?

A mapping 7 : R” — R” is said to be one-to-one if each b in R” is the image
of at most one x in R".



76

CHAPTER 1 Linear Equations in Linear Algebra

Equivalently, T is one-to-one if, for each b in R™, the equation 7' (x) = b has either
a unique solution or none at all. “Is 7" one-to-one?” is a uniqueness question. The
mapping T is not one-to-one when some b in R™ is the image of more than one vector
in R”. If there is no such b, then T is one-to-one. See Fig. 4.

R 4
. Q .
rﬂﬂlﬂ T 4 n&e Iﬂﬂlﬂ ) T
polfy T L po
.—,*/\’ >
0 0 0

1 RM 7

# #
T is not one-to-one T is one-to-one

FIGURE 4 Is every b the image of at most one vector?

Mastering: Existence The projection transformations shown in Table 4 are not one-to-one and do not map
and Uniqueness 1-39 R2 onto R2. The transformations in Tables 1, 2, and 3 are one-to-one and do map R2
onto R2. Other possibilities are shown in the two examples below.
Example 4 and the theorems that follow show how the function properties of being
one-to-one and mapping onto are related to important concepts studied earlier in this
chapter.

EXAMPLE 4 Let T be the linear transformation whose standard matrix is

1 4 8 1
A=[10 2 -1 3
0o 0 0 5

Does T map R* onto R3? Is T a one-to-one mapping?

SOLUTION Since A happens to be in echelon form, we can see at once that A has a
pivot position in each row. By Theorem 4 in Section 1.4, for each b in R?, the equation
Ax = b is consistent. In other words, the linear transformation 7" maps R* (its domain)
onto R3. However, since the equation Ax = b has a free variable (because there are
four variables and only three basic variables), each b is the image of more than one x.
That is, T is not one-to-one. |

THEOREM 11 Let 7 : R"” — R™ be a linear transformation. Then 7 is one-to-one if and only if
the equation 7'(x) = 0 has only the trivial solution.

PROOF Since T is linear, 7(0) = 0. If T is one-to-one, then the equation 7'(x) = 0
has at most one solution and hence only the trivial solution. If 7 is not one-to-one, then
there is a b that is the image of at least two different vectors in R” —say, u and v. That
is, T(u) = b and T'(v) = b. But then, since T is linear,

Tu—v)=T@w)—TK¥)=b—-b=0
The vector u — v is not zero, since u # v. Hence the equation 7'(x) = 0 has more than

one solution. So, either the two conditions in the theorem are both true or they are both
false. |
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€

/ €]
x

X

[ ]
&)
a; /
[ ]
Span{aj, a2}

1

The transformation 7" is not
onto R3.
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Let 7 : R” — R™ be a linear transformation and let A be the standard matrix for
T. Then:

a. T maps R” onto R™ if and only if the columns of A span R";

b. T is one-to-one if and only if the columns of A4 are linearly independent.

PROOF

a. By Theorem 4 in Section 1.4, the columns of A span R™ if and only if for each b
in R™ the equation Ax = b is consistent—in other words, if and only if for every b,
the equation 7'(x) = b has at least one solution. This is true if and only if 7" maps
R" onto R™.

b. The equations 7'(x) = 0 and Ax = 0 are the same except for notation. So, by
Theorem 11, 7' is one-to-one if and only if Ax = 0 has only the trivial solution.
This happens if and only if the columns of A are linearly independent, as was already
noted in the boxed statement (3) in Section 1.7. [ |

Statement (a) in Theorem 12 is equivalent to the statement “7" maps R” onto R”
if and only if every vector in R™ is a linear combination of the columns of 4.” See
Theorem 4 in Section 1.4.

In the next example and in some exercises that follow, column vectors are written in
rows, such as x = (x1, x3), and 7'(x) is written as 7' (x;, x;) instead of the more formal
T((x1,x2)).

EXAMPLE 5 Let T(x1,x2) = (3x; + X3, 5x1 + 7x2, X1 + 3x2). Show that T is a
one-to-one linear transformation. Does 7" map R? onto R3?

SOLUTION When x and 7'(x) are written as column vectors, you can determine the
standard matrix of 7" by inspection, visualizing the row—vector computation of each
entry in AX.

3x1 + X ? ? X 3 1 X
T(x)=|5x+7x |=]2 2 [1]= 5 7 [xl} 4)
X1 + 3x2 1 3 2

~
EN
~

So T is indeed a linear transformation, with its standard matrix A shown in (4). The
columns of A are linearly independent because they are not multiples. By Theorem
12(b), T is one-to-one. To decide if T is onto R3, examine the span of the columns of
A. Since A is 3 x 2, the columns of A span R? if and only if 4 has 3 pivot positions,
by Theorem 4. This is impossible, since A has only 2 columns. So the columns of 4 do
not span R3, and the associated linear transformation is not onto R3. [ |

PRACTICE PROBLEM

Let T : R? — R? be the transformation that first performs a horizontal shear that maps
e, into e, — .5e; (but leaves e; unchanged) and then reflects the result through the x,-
axis. Assuming that 7T is linear, find its standard matrix. [Hint: Determine the final
location of the images of e; and e;.]
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1.9

EXERCISES

In Exercises 1-10, assume that 7 is a linear transformation. Find
the standard matrix of 7.

1.

10.

11.

12.

13.

14.

T :R?>— R*T(e) = (3,1,3,1),and T (e;) = (—5,2,0,0),
where e; = (1,0) and e; = (0, 1).

T:R3>—=R?2 T(e)=(1,4), T(e)=(-2,9), and
T (e3) = (3,—8), where e, e,, and e; are the columns of
the 3 x 3 identity matrix.

T : R? — R? is a vertical shear transformation that maps e,
into e; — 3e,, but leaves e, unchanged.

T : R?> — R?is a horizontal shear transformation that leaves
e; unchanged and maps e, into e, + 2e;.

T : R? — R? rotates points (about the origin) through /2
radians (counterclockwise).

T : R*> — R? rotates points (about the origin) through
—3m/2 radians (clockwise).

T : R? — R? first rotates points through —37/4 radians
(clockwise) and then reflects points through the horizontal

xy-axis. [Hint: T(e)) = (—=1/5/2,1/+/2).]

T : R* — R? first performs a horizontal shear that trans-
forms e, into e, + 2e; (leaving e; unchanged) and then re-
flects points through the line x, = —x;.

T : R* — R? first reflects points through the horizontal x;-
axis and then rotates points —z /2 radians.

T : R* — R? first reflects points through the horizontal x;-
axis and then reflects points through the line x, = Xx;.

A linear transformation T : R? — R? first reflects points
through the x;-axis and then reflects points through the x,-
axis. Show that 7" can also be described as a linear transfor-
mation that rotates points about the origin. What is the angle
of that rotation?

Show that the transformation in Exercise 10 is merely a
rotation about the origin. What is the angle of the rotation?

Let 7 : R? — R? be the linear transformation such that T(er)
and T'(e,) are the vectors shown in the figure. Using the
figure, sketch the vector 7'(2, 1).

X

T(e,) T(e,)

| K

Let T : R? — R? be a linear transformation with standard
matrix A =[a; a,], where a; and a, are shown in the
figure at the top of column 2. Using the figure, draw the

image of |: _; ] under the transformation 7'.

X2
0 d

X1
°a

In Exercises 15 and 16, fill in the missing entries of the matrix,
assuming that the equation holds for all values of the variables.

15.

16.

? ? X1 2X1 — 4x2
? ? X2 = X1 — X3
? ? X3 —X; + 3X3

. 3x; —2x;
[ 1:| =| x1+4x,
X2
X2

In Exercises 17-20, show that 7 is a linear transformation by
finding a matrix that implements the mapping. Note that x;, x,, ...
are not vectors but are entries in vectors.

17.
18.
19.
20.
21.

22,

T(x1,x2,x3,x4) = (X1 4 2x2,0,2x5 + X4, X3 — X4)
T(x1,x2) = (x1 +4x2,0,x; — 3x2,x1)

T(x1, X2, x3) = (x1 — 5x2 + 4x3, x5 — 6x3)

T (x1, X2, X3, X4) = 3x] + 4x3 — 2x4 (Notice: T : R* — R)

Let T :R?> — R? be a linear transformation such that
T(x1,x2) = (x1 + x2,4x; + 5x;). Find x such that 7'(x) =
(3,8).

Let T:R?>—-R?> be a linear transformation with
T (x1,x3) = (2x; — X2, —3x; + X2,2x; — 3x»). Find x such
that 7' (x) = (0, —1, —4).

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23.

24,

a. A linear transformation 7" : R” — R is completely de-
termined by its effect on the columns of the n x n identity
matrix.

b. If T : R? — R? rotates vectors about the origin through
an angle ¢, then 7 is a linear transformation.

c. When two linear transformations are performed one after
another, the combined effect may not always be a linear
transformation.

d. A mapping 7 : R” — R" is onto R™ if every vector X in
R” maps onto some vector in R”.

e. If A is a 3 x 2 matrix, then the transformation x > Ax
cannot be one-to-one.

a. If A is a 4 x 3 matrix, then the transformation x — Ax
maps R? onto R*.



b. Every linear transformation from R” to R" is a matrix
transformation.

c. The columns of the standard matrix for a linear transfor-
mation from R” to R are the images of the columns of
the n x n identity matrix under 7.

d. A mapping 7 : R" — R™ is one-to-one if each vector in
R" maps onto a unique vector in R”.

e. The standard matrix of a horizontal shear transformation

from R? to R? has the form

are +1.

a 0
0 dl where a and d

In Exercises 25-28, determine if the specified linear transforma-
tion is (a) one-to-one and (b) onto. Justify each answer.

25. The transformation in Exercise 17

26. The transformation in Exercise 2

27. The transformation in Exercise 19

28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the
standard matrix for a linear transformation 7". Use the notation of
Example 1 in Section 1.2.

29. T :R?®— R*is one-to-one. 30. 7 :R* — R?is onto.

31. Let T :R" — R"™ be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “T is one-to-one if and only if A has pivot
columns.” Explain why the statement is true. [Hint: Look
in the exercises for Section 1.7.]

32. Let T : R" — R™ be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “7 maps R” onto R” if and only if A has
pivot columns.” Find some theorems that explain why the
statement is true.
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33. Verify the uniqueness of A in Theorem 10. Let 7 : R” — R™
be a linear transformation such that 7'(x) = Bx for some
m X n matrix B. Show that if A is the standard matrix for
T, then A = B. [Hint: Show that A and B have the same
columns. |

34, Let S :R? - R" and T : R” — R™ be linear transforma-
tions. Show that the mapping x > T'(S(x)) is a linear trans-
formation (from R? to R™). [Hint: Compute 7' (S(cu + dv))
for u,v in R” and scalars ¢ and d. Justify each step of
the computation, and explain why this computation gives the
desired conclusion. ]

35. If a linear transformation 7" : R” — R” maps R” onto R",
can you give a relation between m and n? If T' is one-to-one,
what can you say about m and n?

36. Why is the question “Is the linear transformation 7" onto?”
an existence question?

[M] In Exercises 37-40, let T' be the linear transformation whose
standard matrix is given. In Exercises 37 and 38, decide if 7" is
a one-to-one mapping. In Exercises 39 and 40, decide if 7" maps
R onto R?. Justify your answers.

-5 6 -5 —6 7 5 9 -9
8 3 -3 8 5 6 4 —4
37. 2 9 5 —-12 38 4 8 0 7
3 2 7 -12 -6 -6 6 5

39. | =7 10 =8 -9 14

4. | -8 -6 12 -5 -9

|13 14 15 3 11|

SOLUTION TO PRACTICE PROBLEM

Follow what happens to e; and e,. See Fig. 5. First, e; is unaffected by the shear and
then is reflected into —e;. So T'(e;) = —e;.

Second, e, goes to e, — .5e; by the shear

o [s F '
\_/

Shear transformation

Reflection through the xz—axis

FIGURE 5 The composition of two transformations.
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transformation. Since reflection through the x;-axis changes e; into —e; and leaves
e, unchanged, the vector e, — .5e; goes to e; + .5e¢;. So T'(e;) = e, + .5e;. Thus the
standard matrix of T is

ror otete mssni=[ 1]

1.10 LINEAR MODELS IN BUSINESS, SCIENCE, AND ENGINEERING

The mathematical models in this section are all linear; that is, each describes a problem
by means of a linear equation, usually in vector or matrix form. The first model concerns
nutrition but actually is representative of a general technique in linear programming
problems. The second model comes from electrical engineering. The third model
introduces the concept of a linear difference equation, a powerful mathematical tool for
studying dynamic processes in a wide variety of fields such as engineering, ecology,
economics, telecommunications, and the management sciences. Linear models are
important because natural phenomena are often linear or nearly linear when the variables
involved are held within reasonable bounds. Also, linear models are more easily adapted
for computer calculation than are complex nonlinear models.

As you read about each model, pay attention to how its linearity reflects some
property of the system being modeled.

Constructing a Nutritious Weight-Loss Diet

The formula for the Cambridge Diet, a popular diet in the 1980s, was based on years
of research. A team of scientists headed by Dr. Alan H. Howard developed this
diet at Cambridge University after more than eight years of clinical work with obese
patients.! The very low-calorie powdered formula diet combines a precise balance
of carbohydrate, high-quality protein, and fat, together with vitamins, minerals, trace
elements, and electrolytes. Millions of persons have used the diet to achieve rapid and
substantial weight loss.

To achieve the desired amounts and proportions of nutrients, Dr. Howard had to
incorporate a large variety of foodstuffs in the diet. Each foodstuff supplied several of
the required ingredients, but not in the correct proportions. For instance, nonfat milk
was a major source of protein but contained too much calcium. So soy flour was used for
part of the protein because soy flour contains little calcium. However, soy flour contains
proportionally too much fat, so whey was added since it supplies less fat in relation to
calcium. Unfortunately, whey contains too much carbohydrate. . . .

The following example illustrates the problem on a small scale. Listed in Table 1
are three of the ingredients in the diet, together with the amounts of certain nutrients
supplied by 100 grams (g) of each ingredient.?

EXAMPLE 1 Ifpossible, find some combination of nonfat milk, soy flour, and whey
to provide the exact amounts of protein, carbohydrate, and fat supplied by the diet in
one day (Table 1).

I'The first announcement of this rapid weight-loss regimen was given in the International Journal of Obesity
(1978) 2, 321-332.

2Ingredients in the diet as of 1984; nutrient data for ingredients adapted from USDA Agricultural
Handbooks No. 8-1 and 8-6, 1976.
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TABLE 1

Amounts (g) Supplied per 100 g of Ingredient Amounts (g) Supplied by
Nutrient Nonfat milk Soy flour  Whey Cambridge Diet in One Day
Protein 36 51 13 33
Carbohydrate 52 34 74 45

Fat 0 7 1.1 3

SOLUTION Let x;, xp, and x3, respectively, denote the number of units (100 g) of
these foodstuffs. One approach to the problem is to derive equations for each nutrient
separately. For instance, the product

x units of | |protein per unit
nonfat milk of nonfat milk

gives the amount of protein supplied by x; units of nonfat milk. To this amount, we
would then add similar products for soy flour and whey and set the resulting sum equal
to the amount of protein we need. Analogous calculations would have to be made for
each nutrient.

A more efficient method, and one that is conceptually simpler, is to consider a
“nutrient vector” for each foodstuff and build just one vector equation. The amount of
nutrients supplied by x; units of nonfat milk is the scalar multiple

Scalar Vector
% X1 units of } {nutrients per unit

nonfat milk of nonfat milk | — *1a

ey
where a; is the first column in Table 1. Let a, and a3 be the corresponding vectors
for soy flour and whey, respectively, and let b be the vector that lists the total nutrients
required (the last column of the table). Then x,a, and x3a3 give the nutrients supplied
by x; units of soy flour and x3 units of whey, respectively. So the relevant equation is

xXia; + xa, + x3a3 = b ()

Row reduction of the augmented matrix for the corresponding system of equations
shows that

36 51 13 33 1 0 0 277
52 34 74 45| ~---~ |0 1 0 392
0 7 1.1 3 0o 0 1 .233

To three significant digits, the diet requires .277 units of nonfat milk, .392 units of
soy flour, and .233 units of whey in order to provide the desired amounts of protein,
carbohydrate, and fat. n

It is important that the values of x, x,, and x3 found above are nonnegative. This is
necessary for the solution to be physically feasible. (How could you use —.233 units of
whey, for instance?) With a large number of nutrient requirements, it may be necessary
to use a larger number of foodstuffs in order to produce a system of equations with a
“nonnegative” solution. Thus many, many different combinations of foodstuffs may
need to be examined in order to find a system of equations with such a solution. In
fact, the manufacturer of the Cambridge Diet was able to supply 31 nutrients in precise
amounts using only 33 ingredients.

The diet construction problem leads to the linear equation (2) because the amount
of nutrients supplied by each foodstuff can be written as a scalar multiple of a vector, as
in (1). That is, the nutrients supplied by a foodstuff are proportional to the amount of
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20 volts
FIGURE 1

the foodstuff added to the diet mixture. Also, each nutrient in the mixture is the sum of
the amounts from the various foodstuffs.

Problems of formulating specialized diets for humans and livestock occur fre-
quently. Usually they are treated by linear programming techniques. Our method of
constructing vector equations often simplifies the task of formulating such problems.

Linear Equations and Electrical Networks

Current flow in a simple electrical network can be described by a system of linear
equations. A voltage source such as a battery forces a current of electrons to flow
through the network. When the current passes through a resistor (such as a lightbulb or
motor), some of the voltage is “used up”; by Ohm’s law, this “voltage drop” across a
resistor is given by

V =RI

where the voltage 1 is measured in volts, the resistance R in ohms (denoted by €2), and
the current flow I in amperes (amps, for short).

The network in Fig. 1 contains three closed loops. The currents flowing in loops 1,
2, and 3 are denoted by /I, I5, and I3, respectively. The designated directions of such
loop currents are arbitrary. If a current turns out to be negative, then the actual direction
of current flow is opposite to that chosen in the figure. If the current direction shown is
away from the positive (longer) side of a battery ({+) around to the negative (shorter)
side, the voltage is positive; otherwise, the voltage is negative.

Current flow in a loop is governed by the following rule.

KIRCHHOFF'S VOLTAGE LAW

The algebraic sum of the R/ voltage drops in one direction around a loop equals
the algebraic sum of the voltage sources in the same direction around the loop.

EXAMPLE 2 Determine the loop currents in the network in Fig. 1.

SOLUTION For loop 1, the current I; flows through three resistors, and the sum of the
RI voltage drops is

AL + 41 + 31 = (4+ 4+ 31, = 111,

Current from loop 2 also flows in part of loop 1, through the short branch between A
and B. The associated R/ drop there is 3/, volts. However, the current direction for
the branch AB in loop 1 is opposite to that chosen for the flow in loop 2, so the algebraic
sum of all R/ drops for loop 1 is 11/, — 31,. Since the voltage in loop 1 is 430 volts,
Kirchhoff’s voltage law implies that

117, -3, =30
The equation for loop 2 is
=3I +6l,—I3=5

The term —3/; comes from the flow of the loop-1 current through the branch AB (with
a negative voltage drop because the current flow there is opposite to the flow in loop 2).
The term 61, is the sum of all resistances in loop 2, multiplied by the loop current. The
term —/3 = —1 - I3 comes from the loop-3 current flowing through the 1-ohm resistor
in branch CD, in the direction opposite to the flow in loop 2. The loop-3 equation is

-0+ 31; =-25
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Note that the 5-volt battery in branch CD is counted as part of both loop 2 and loop 3,
but it is —5 volts for loop 3 because of the direction chosen for the current in loop 3.
The 20-volt battery is negative for the same reason.

The loop currents are found by solving the system

111, =31, = 30
=3I +6l, — I3= 5 3)

- L +3L=-25
Row operations on the augmented matrix lead to the solution: I, = 3 amps, I, =
1 amp, and /3 = —8 amps. The negative value of I3 indicates that the actual current
in loop 3 flows in the direction opposite to that shown in Fig. 1. |

It is instructive to look at system (3) as a vector equation:

11 -3 0 30
L| -3 |+L| 6|+L]—-1]|= 5 4)
0 -1 3 —-25
t t t t
I I I3 v

The first entry of each vector concerns the first loop, and similarly for the second and
third entries. The first resistor vector r; lists the resistance in the various loops through
which current /; flows. A resistance is written negatively when /; flows against the
flow direction in another loop. Examine Fig. 1 and see how to compute the entries in
ri; then do the same for r, and r3. The matrix form of equation (4),

Ri=v, where R=[r; r, r3] and i=| 1,
I3

provides a matrix version of Ohm’s law. If all loop currents are chosen in the same
direction (say, counterclockwise), then all entries off the main diagonal of R will be
negative.

The matrix equation Ri = v makes the linearity of this model easy to see at a glance.
For instance, if the voltage vector is doubled, then the current vector must double. Also,
a superposition principle holds. That is, the solution of equation (4) is the sum of the
solutions of the equations

30 0 0
Ri = 0, Ri=|5]|, and Ri= 0
0 0 -25

Each equation here corresponds to the circuit with only one voltage source (the other
sources being replaced by wires that close each loop). The model for current flow is
linear precisely because Ohm’s law and Kirchhoff’s law are linear: The voltage drop
across a resistor is proportional to the current flowing through it (Ohm), and the sum of
the voltage drops in a loop equals the sum of the voltage sources in the loop (Kirchhoff).

Loop currents in a network can be used to determine the current in any branch of
the network. If only one loop current passes through a branch, such as from B to D
in Fig. 1, the branch current equals the loop current. If more than one loop current
passes through a branch, such as from A to B, the branch current is the algebraic sum
of the loop currents in the branch (Kirchhoff’s current law). For instance, the current in
branch ABis I} — I, = 3 — 1 = 2 amps, in the direction of /;. The current in branch
CDis I, — Iz = 9 amps.
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Difference Equations

In many fields such as ecology, economics, and engineering, a need arises to model
mathematically a dynamic system that changes over time. Several features of the system
are each measured at discrete time intervals, producing a sequence of vectors Xg, Xj,
Xy, .... The entries in X, provide information about the state of the system at the time
of the kth measurement.

If there is a matrix A such that x; = Ax,, X, = AX|, and, in general,

X1 = Ax; fork =0,1,2,... 5)

then (5) is called a linear difference equation (or recurrence relation). Given such
an equation, one can compute X;, X, and so on, provided X, is known. Sections 4.8
and 4.9, and several sections in Chapter 5, will develop formulas for x; and describe
what can happen to x; as k increases indefinitely. The discussion below illustrates how
a difference equation might arise.

A subject of interest to demographers is the movement of populations or groups of
people from one region to another. The simple model here considers the changes in the
population of a certain city and its surrounding suburbs over a period of years.

Fix an initial year—say, 2000—and denote the populations of the city and suburbs
that year by ry and so, respectively. Let X, be the population vector

— o City population, 2000
0= S0 Suburban population, 2000

For 2001 and subsequent years, denote the populations of the city and suburbs by the

vectors
r r r3
X = , Xy = , X3 = yeee
S1 52 53

Our goal is to describe mathematically how these vectors might be related.

Suppose demographic studies show that each year about 5% of the city’s population
moves to the suburbs (and 95% remains in the city), while 3% of the suburban population
moves to the city (and 97% remains in the suburbs). See Fig. 2.

City

.05
.95 97

.03

FIGURE 2 Annual percentage migration between city and suburbs.

After 1 year, the original ry persons in the city are now distributed between city and

suburbs as
95rg | p .95 Remain in city ©)
05rg | — o1 .05 Move to suburbs

The s¢ persons in the suburbs in 2000 are distributed 1 year later as

S0|: .03 :| Move to city @

.97 Remain in suburbs
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The vectors in (6) and (7) account for all of the population in 2001.3 Thus
"ol .95 " 031 195 .03 || ro
si] T Los | T o7 T 05 97| s

X = MXO (8)

That is,

where M is the migration matrix determined by the following table:

From:
City Suburbs To:

95 .03 City
05 .97 Suburbs

Equation (8) describes how the population changes from 2000 to 2001. If the migration
percentages remain constant, then the change from 2001 to 2002 is given by

Xy = MX]
and similarly for 2002 to 2003 and subsequent years. In general,
Xpt+1 = Mx; fork =0,1,2,... ©)]

The sequence of vectors {Xg, X;, Xz, ...} describes the population of the city/suburban
region over a period of years.

EXAMPLE 3 Compute the population of the region just described for the years
2001 and 2002, given that the population in 2000 was 600,000 in the city and 400,000
in the suburbs.

600,000
400,000

N .95 .03 || 600,000 | | 582,000
"7 1.05 .97 || 400,000 | ~ | 418,000

95 .03 || 582,000 | | 565,440
.05 .97 || 418,000 | — | 434,560

SOLUTION The initial population in 2000 is xo = |: ] For 2001,

For 2002,

Xy = M X = |: |

The model for population movement in (9) is linear because the correspondence
X; > Xk +1 1s a linear transformation. The linearity depends on two facts: the number
of people who chose to move from one area to another is proportional to the number of
people in that area, as shown in (6) and (7), and the cumulative effect of these choices
is found by adding the movement of people from the different areas.

PRACTICE PROBLEM
Find a matrix 4 and vectors x and b such that the problem in Example 1 amounts to

solving the equation Ax = b.

3For simplicity, we ignore other influences on the population such as births, deaths, and migration into and
out of the city/suburban region.
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1.10 EXERCISES

1. The container of a breakfast cereal usually lists the number

classical Mac and Cheese to Annie’s® Whole Wheat

of calories and the amounts of protein, carbohydrate, and
fat contained in one serving of the cereal. The amounts for
two common cereals are given below. Suppose a mixture of
these two cereals is to be prepared that contains exactly 295
calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat.
a. Setup a vector equation for this problem. Include a state-
ment of what the variables in your equation represent.

b. Write an equivalent matrix equation, and then determine
if the desired mixture of the two cereals can be prepared.

Nutrition Information per Serving

General Mills Quaker®
Nutrient Cheerios 100% Natural Cereal
Calories 110 130
Protein (g) 4 3
Carbohydrate (g) 20 18
Fat (g) 2 5

Shells and White Cheddar. What proportions of servings
of each food should she use to meet the same goals as in
part (a)?

. The Cambridge Diet supplies .8 g of calcium per day, in

addition to the nutrients listed in the Table 1 for Example
1. The amounts of calcium per unit (100 g) supplied by the
three ingredients in the Cambridge Diet are as follows: 1.26 g
from nonfat milk, .19 g from soy flour, and .8 g from whey.
Another ingredient in the diet mixture is isolated soy protein,
which provides the following nutrients in each unit: 80 g of
protein, O g of carbohydrate, 3.4 g of fat, and .18 g of calcium.
a. Set up a matrix equation whose solution determines the
amounts of nonfat milk, soy flour, whey, and isolated
soy protein necessary to supply the precise amounts of
protein, carbohydrate, fat, and calcium in the Cambridge
Diet. State what the variables in the equation represent.

b. [M] Solve the equation in (a) and discuss your answer.

. One serving of Shredded Wheat supplies 160 calories, 5 g of ~ In Exercises 5-8, write a matrix equation that determines the loop
protein, 6 g of fiber, and 1 g of fat. One serving of Crispix® currents. [M] If MATLAB or another matrix program is available,

supplies 110 calories, 2 g of protein, .1 g of fiber, and .4 g of ~ solve the system for the loop currents.

fat.

a. Setup a matrix B and a vector u such that Bu gives the
amounts of calories, protein, fiber, and fat contained in
a mixture of three servings of Shredded Wheat and two
servings of Crispix.

b. [M] Suppose that you want a cereal with more fiber than
Crispix but fewer calories than Shredded Wheat. Is it
possible for a mixture of the two cereals to supply 130
calories, 3.20 g of protein, 2.46 g of fiber, and .64 g of
fat? If so, what is the mixture?

. After taking a nutrition class, a big Annie’s® Mac and Cheese
fan decides to improve the levels of protein and fiber in
her favorite lunch by adding broccoli and canned chicken.
The nutritional information for the foods referred to in this
exercise are given in the table below.

Nutrition Information per Serving
Nutrient Mac and Cheese Broccoli Chicken Shells

Calories 270 51 70 260
Protein (g) 10 54 15 9
Fiber (g) 2 5.2 0 5

a. [M] If she wants to limit her lunch to 400 calories but
get 30 g of protein and 10 g of fiber, what proportions of
servings of Mac and Cheese, broccoli, and chicken should
she use?

b. [M] She found that there was too much broccoli in the
proportions from part (a), so she decided to switch from

6.
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11.
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In a certain region, about 7% of a city’s population moves
to the surrounding suburbs each year, and about 5% of the
suburban population moves into the city. In 2010, there were
800,000 residents in the city and 500,000 in the suburbs.
Set up a difference equation that describes this situation,
where X, is the initial population in 2010. Then estimate
the populations in the city and in the suburbs two years
later, in 2012. (Ignore other factors that might influence the
population sizes.)

In a certain region, about 6% of a city’s population moves
to the surrounding suburbs each year, and about 4% of the
suburban population moves into the city. In 2010, there were
10,000,000 residents in the city and 800,000 in the suburbs.
Set up a difference equation that describes this situation,
where X is the initial population in 2010. Then estimate the
populations in the city and in the suburbs two years later, in
2012.

In 1994, the population of California was 31,524,000, and
the population living in the United States but outside Cali-
fornia was 228,680,000. During the year, it is estimated that
516,100 persons moved from California to elsewhere in the
United States, while 381,262 persons moved to California
from elsewhere in the United States.*

a. Set up the migration matrix for this situation, using five
decimal places for the migration rates into and out of
California. Let your work show how you produced the
migration matrix.

b. [M] Compute the projected populations in the year 2000
for California and elsewhere in the United States, assum-
ing that the migration rates did not change during the 6-
year period. (These calculations do not take into account
births, deaths, or the substantial migration of persons into
California and elsewhere in the United States from other
countries.)

4 Migration data supplied by the Demographic Research Unit of the

California State Department of Finance.

12.

13.

14.

[M] Budget® Rent A Car in Wichita, Kansas has a fleet of
about 500 cars, at three locations. A car rented at one location
may be returned to any of the three locations. The various
fractions of cars returned to the three locations are shown in
the matrix below. Suppose that on Monday there are 295 cars
at the airport (or rented from there), 55 cars at the east side
office, and 150 cars at the west side office. What will be the
approximate distribution of cars on Wednesday?

Cars Rented From:

Airport East  West Returned To:
.97 .05 .10 Airport
.00 .90 .05 East
.03 .05 .85 West

[M] Let M and x, be as in Example 3.

a. Compute the population vectors x; for k = 1,...,20.
Discuss what you find.

b. Repeat part (a) with an initial population of 350,000 in
the city and 650,000 in the suburbs. What do you find?

[M] Study how changes in boundary temperatures on a steel
plate affect the temperatures at interior points on the plate.

a. Begin by estimating the temperatures 7, 1>, T3, T, at
each of the sets of four points on the steel plate shown in
the figure. In each case, the value of 7} is approximated
by the average of the temperatures at the four closest
points. See Exercises 33 and 34 in Section 1.1, where
the values (in degrees) turn out to be (20, 27.5, 30, 22.5).
How is this list of values related to your results for the
points in set (a) and set (b)?

b. Without making any computations, guess the interior

temperatures in (a) when the boundary temperatures are
all multipled by 3. Check your guess.

c. Finally, make a general conjecture about the correspon-
dence from the list of eight boundary temperatures to the
list of four interior temperatures.

Plate A Plate B
20°  20° 0 0°
0° ! 2 0° 10° ! 2 40°
0° 4 3 0° 10° 4 3 40°
200 20° 10°  10°
(a) (b)
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SOLUTION TO PRACTICE PROBLEM

13 X1 33
74 , XxX=|x2 |, b=|45
1.1 X3 3

CHAPTER 1 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. (If

true, cite appropriate facts or theorems. If false, explain why

or give a counterexample that shows why the statement is not

true in every case.

a. Every matrix is row equivalent to a unique matrix in
echelon form.

b. Any system of n linear equations in n variables has at
most 7 solutions.

c. If a system of linear equations has two different solu-
tions, it must have infinitely many solutions.

d. Ifasystem of linear equations has no free variables, then
it has a unique solution.

e. If an augmented matrix [ A b] is transformed into
[C d] by elementary row operations, then the equa-
tions Ax = b and Cx = d have exactly the same solu-
tion sets.

f. If a system Ax = b has more than one solution, then so
does the system Ax = 0.

g. If A is an m x n matrix and the equation Ax =b is
consistent for some b, then the columns of A span R™.

h. If an augmented matrix [ A b ] can be transformed by
elementary row operations into reduced echelon form,
then the equation Ax = b is consistent.

i. If matrices A and B are row equivalent, they have the
same reduced echelon form.

j- The equation Ax = 0 has the trivial solution if and only
if there are no free variables.

k. If Ais anm x n matrix and the equation Ax = b is con-
sistent for every b in R”, then 4 has m pivot columns.

l.  If an m x n matrix A has a pivot position in every row,
then the equation Ax = b has a unique solution for each
b in R™.

m. If an n xn matrix A has n pivot positions, then the
reduced echelon form of A is the n x n identity matrix.

n. If 3 x 3 matrices A and B each have three pivot posi-
tions, then A can be transformed into B by elementary
row operations.

o. If Ais an m x n matrix, if the equation Ax = b has at
least two different solutions, and if the equation Ax = ¢
is consistent, then the equation Ax = ¢ has many solu-
tions.

p. If Aand B are row equivalent /7 x n matrices and if the
columns of A span R”, then so do the columns of B.

q. If none of the vectors in the set S = {v|,v,, v3} in R? is
a multiple of one of the other vectors, then S is linearly
independent.

r. If {u, v, w} is linearly independent, then u, v, and w are
not in R2.

s. In some cases, it is possible for four vectors to span R>.
t. Ifuandvare in R”, then —u is in Span{u, v}.

u. Ifu, v, and w are nonzero vectors in R?, then w is a linear
combination of u and v.

v. If wis a linear combination of u and v in R”, then u is a
linear combination of v and w.

w. Suppose that vy, v, and v; are in R>, v, is not a multiple
of vy, and v3 is not a linear combination of v; and v,.
Then {vy, v,, v3} is linearly independent.

X. A linear transformation is a function.

y. If Ais a6 x5 matrix, the linear transformation x — Ax
cannot map R onto R®.

z. If Ais an m x n matrix with m pivot columns, then the
linear transformation x — AX is a one-to-one mapping.

Let a and b represent real numbers. Describe the possible
solution sets of the (linear) equation ax = b. [Hint: The
number of solutions depends upon a and b.]

The solutions (x, y, z) of a single linear equation
ax +by+cz=d

form a plane in R when a, b, and ¢ are not all zero. Construct
sets of three linear equations whose graphs (a) intersect in
a single line, (b) intersect in a single point, and (c) have no



points in common. Typical graphs are illustrated in the figure.

- 1

. b

Three planes intersecting
in a line

Three planes intersecting
in a point
(a) (b)

ol | l

Three planes with no Three planes with no
intersection intersection

© (c)

. Suppose the coefficient matrix of a linear system of three
equations in three variables has a pivot position in each
column. Explain why the system has a unique solution.

. Determine /& and k such that the solution set of the system

(i) is empty, (ii) contains a unique solution, and (iii) contains

infinitely many solutions.

a. x +3x0n=k b.
4x1 + hx, = 8

—2x1 + hx, = 1
6x1 + kxo = =2
. Consider the problem of determining whether the following
system of equations is consistent:
4X1 — 2X2 + 7)C3 = -5
8x; —3x; + 10x;3 = -3
a. Define appropriate vectors, and restate the problem in
terms of linear combinations. Then solve that problem.

b. Define an appropriate matrix, and restate the problem
using the phrase “columns of A4.”

c. Define an appropriate linear transformation 7" using the
matrix in (b), and restate the problem in terms of 7'.

. Consider the problem of determining whether the following
system of equations is consistent for all by, b,, bs:
2)C1 — 4)(72 — 2)C3 = b1
—5X1 + X2+ X3 = bz
7X1 — 5)62 — 3X3 = b3
a. Define appropriate vectors, and restate the problem in
terms of Span {v|, v,, v3}. Then solve that problem.

b. Define an appropriate matrix, and restate the problem
using the phrase “columns of 4.”

10.

11.

12.

13.

14.

15.

16.

17.

18.
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c. Define an appropriate linear transformation 7" using the
matrix in (b), and restate the problem in terms of 7'.

Describe the possible echelon forms of the matrix A. Use the
notation of Example 1 in Section 1.2.

a. Aisa?2 x 3 matrix whose columns span R2.

b. Aisa3 x 3 matrix whose columns span R?.

. 5
Write the vector [ 6i| as the sum of two vectors,

one on the line {(x,y):y =2x} and one on the line
{(x.y) 1y =x/2}.
Leta,, a5, and b be the vectors in R? shown in the figure, and

let A =[a; a,]. Does the equation Ax = b have a solution?
If so, is the solution unique? Explain.

2

as

Construct a 2 x 3 matrix A, not in echelon form, such that
the solution of Ax = 0 is a line in R3.

Construct a 2 x 3 matrix A, not in echelon form, such that
the solution of Ax = 0 is a plane in R*.

Write the reduced echelon form of a 3 x 3 matrix A such
that the first two columns of A are pivot columns and

3 0
Al =21 =10
1 0

. 1 a .
Determine the value(s) of a such that {|:a :| , |:a P :|} is
linearly independent.

In (a) and (b), suppose the vectors are linearly independent.
What can you say about the numbers a, ..., f? Justify your
answers. [Hint: Use a theorem for (b).]

p b d a b d

a. 0O1f,]c|,| e b. ! s ¢ R e-
0 0 ’ 0 1 f

0 0 1

Use Theorem 7 in Section 1.7 to explain why the columns of
the matrix A are linearly independent.

1 0 0 O
2 5 0 0
A= 36 8 0
4 7 9 10

Explain why a set {v|,V,,v3,v4} in R® must be linearly
independent when {v{, v,, v3} is linearly independent and v,
is not in Span {vi, v, v3}.

Suppose {v;, v,} is a linearly independent set in R”. Show
that {v,, v; 4 v,} is also linearly independent.
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19.

20.

21.

22,

23.
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Suppose vy, v,, v3 are distinct points on one line in R3. The
line need not pass through the origin. Show that {v, v,, v3}
is linearly dependent.

Let T : R" — R™ be a linear transformation, and suppose
T'(u) = v. Show that 7 (—u) = —v.

Let T :R3— R?® be the linear transformation that re-
flects each vector through the plane x, = 0. That is,
T (x1, X2, x3) = (X1, —X2, x3). Find the standard matrix of 7.

Let A be a 3 x 3 matrix with the property that the linear
transformation x — Ax maps R3 onto R®. Explain why the
transformation must be one-to-one.

A Givens rotation is a linear transformation from R” to R”
used in computer programs to create a zero entry in a vector
(usually a column of a matrix). The standard matrix of a
Givens rotation in R? has the form

a _b 2 2
|:b a:|’ a-+b"=1

Find a and b such that |: ;1 :| is rotated into |: (5) :|

B2

| X
(5.0

A Givens rotation in R2.

24.

25.

The following equation describes a Givens rotation in R3.
Find a and b.

a 0 —=b7|[2 25
o 1 off{3|=| 3 |, a+b=1
b 0 a 4 0

A large apartment building is to be built using modular
construction techniques. The arrangement of apartments
on any particular floor is to be chosen from one of three
basic floor plans. Plan A has 18 apartments on one floor,
including 3 three-bedroom units, 7 two-bedroom units, and 8
one-bedroom units. Each floor of plan B includes 4 three-
bedro